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Abstract

We study the optimal disclosure policy of a planner under negative externality. We
model the strategic communication between the planner and the agent following the
information design a la Kamenica and Gentzkow(2011). Additionally, we assume that
relevant information is scientific, thus both the planner and the agent have access to
the information subject to a cost function following Rational Inattention, a la Caplin,
Dean, and Leahy (2018). We show the planner truthfully recommends in the good state
and mixes the bad and the middle state by staying silent. Silence is informative for the
agent but it strategically changes the consideration set for the agent, improving social
welfare.
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1 Introduction
The recent pandemic has highlighted the importance of strategic communication. Con-
sider a planner who is trying to communicate appropriate public health advisory to an
agent in presence of negative externality. The misalignment between the public and
the private objective would make it difficult for the planner to communicate truthfully.
Problems with such strategic communication models are commonplace in economics,
however, we consider a communication problem regarding scientific information. Two
features of scientific information complicate our problem. First, it is difficult or costly
to obtain and understand them and second, often such information is available in the
public domain through various journals and databases. Using the strategic communi-
cation framework of information design literature a la Kamenica and Gentzkow (2011)
[KG 2011 henceforth], we want to understand how strategic communication affects the
dissemination of scientific information. KG 2011 showed even in presence of preference
misalignment the sender can manipulate the action of the receiver through communi-
cation.

To model this we consider a strategic communication framework in which the plan-
ner (sender) wants to send a recommendation (message) to a representative agent
(receiver) where both of them have access to the same learning technology but learn-
ing is costly for both. Previous papers in the literature have considered models with
costs of learning on one side. Kamenica and Gentzkow (2014) show if only the sender
has a cost of learning, under some restrictions on the cost of learning function, the
results remain unaltered. Matyskova (2018) considers a model where the sender faces
no cost but the receiver can pay a learning cost and obtain information. However, in
equilibrium, it is never optimal to do so. In this paper, with costs on both sides, we
find a different channel of manipulating behavior.

Since the same costly learning technology is available to both the planner and the
agent the planner cannot directly manipulate the action chosen by the agent. Instead
of using the communication strategy only, the planner also uses his learning strategy
to manipulate the agent’s behavior. To model the learning problem we borrow from
the cost of information processing models in the Rational Inattention (RI henceforth)
literature (see Caplin and Dean(2015), Matejka and McKay(2015), Caplin, Dean, and
Leahy (2018)). One interesting feature of these models is that when learning is costly,
agents optimally choose to not pay attention to all available actions. This creates an
endogenous consideration set chosen by the agent that optimizes the net payoff.

Using the consideration set framework of RI literature we show that in equilibrium,
the planner chooses a learning and communication strategy that changes the consider-
ation set of the agent. We implement this by allowing the planner an option to send no
recommendation. No recommendation is informative, i.e., it changes the intermediate
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belief and hence the consideration set of the agent. Thus in this model, the planner
strategically manipulates the consideration set of the agent to implement a favorable
set of actions. We further explore the impact of strategic communication on scientific
learning. To do so we compare our equilibrium with a hypothetical communication
problem where the agent fully complies with the recommendation of the planner. We
find that under strategic communication, the planner often learns less. More impor-
tantly, learning loss happens in states where learning is more crucial, i.e., the payoff
loss from making a mistake is much higher.

For the rest of the paper, we will continue with the example of public health commu-
nication. However, our model can be applied to any strategic communication problem
where both sides can access information, subject to a learning cost. Any communica-
tion problem that involves complexity, e.g., providing technical information to farmers,
or providing financial information to agents, can be modeled using this framework.

1.1 Literature Review
The strategic communication framework in this paper is built on the information design
problem a la Kamenica and Gentzkow (2011). Several recent papers have added a cost
structure following RI literature, in the canonical information design setup. Kamenica
and Gentzkow (2014) consider a variation where only the sender faces a cognitive
cost. However they find that for the posterior separable cost function (see Caplin,
Dean, and Leahy (2018) for more details) the main result from KG 2011 holds, i.e,
the sender can manipulate the receiver’s action. In Matyskova (2018) receiver has an
option to learn (costly) after obtaining the information from the sender whereas the
sender faces no cost. Unlike this paper, they find that the receiver never learns on
his own in equilibrium, because the sender can choose any information structure he
wants. Bloedel and Segal (2018) also assume a cognitive cost for the receiver and with
continuous state and two actions, they find the sender optimally partitions the state
space into at most three intervals and provides either a simple recommendation strategy
(pooling) or complex information strategy of disclosing the state(separating). Unlike
their model disclosing the state is never optimal in our model since the receiver can learn
on his own as well which leads to the optimal non-revelation strategy. Lipnowski et al
(2020) show that if the receiver faces a cost of attention then even a benevolent sender
(no preference misalignment) would not reveal full information and would prefer to
restrict the choice set of the receiver, which improves welfare. In our model, the sender
cannot directly restrict the choice set, but they do so with their optimal communication
strategy.

The learning technology used in this paper is borrowed from Rational Inattention
literature. Caplin and Dean (2015), Matejka, and McKay (2015) have shown that
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solving the optimal choice of signals and the optimal posterior distribution is equivalent
when Bayesian plausibility is satisfied. We use this formulation to solve the strategic
interaction problem between the rationally inattentive agents and a social planner
with misalignment in preferences. In a recent paper, Caplin et al (2018) related the
RI learning problem to an endogenous consideration set problem. In this paper, we
use a similar analysis and investigate how the planner can strategically change the
consideration set of the agent using the information policy.

The results obtained in this paper also relate to the consideration set literature.
Manzini and Mariotti (2014) provide an axiomatic foundation of choice under consid-
eration set formation. Lleras et al (2015) characterize choice behavior under different
consideration sets. In both cases, the formation of the consideration is a result of as-
sumptions about the choice problem. However, in this paper even though we obtain
a consideration set formulation, unlike the previous literature the formation of the
consideration set is generated as an implication of a strategic communication problem.
The formation of an endogenous choice set is thus not a result of choice axioms but
an implication of the cost of learning. Since learning is costly, agents exclude some ac-
tions from consideration based on prior beliefs. A similar intuition is present in Caplin,
Dean, and Leahy (2018). In this paper, we further show that strategic communication
can manipulate this process.

In spirit, this paper is also close to the disclosure policies literature. Some prominent
examples are Goldstein and Leitner (2018) and Leitner and Williams (2020). In both
these papers, a regulator conveys information about the financial condition of a bank
in a possible distress scenario. No information leads to costly market failure here.
In equilibrium, regulator mixes good bank with bad banks to improve social welfare.
Unlike the disclosure literature in bank regulation, in this paper, no communication can
be an optimal strategy as it triggers a learning behavior of the agent that is beneficial
to the regulator.

The rest of the paper is organized as follows. Section 2 outlines a working example
that we use throughout the paper. Section 3 describes the model, section 4 discusses
the main results and section 5 concludes.

2 Illustrative Example
Before we introduce our model let us consider a simple example that illustrates the
main findings. Let us consider the public health communication problem during the
Covid 19 pandemic. For simplicity, let us assume three actions are optimal in three
possible scenarios. First, going out without a mask both indoors and outdoors (similar
to pre-Covid scenario), second, going out with masks and Covid-appropriate behavior,
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and third, staying home unless an emergency arrives. Let us consider the first action
to be most risky and only appropriate if a sufficient number of citizens have been fully
vaccinated and herd immunity has been reached in the community. The third action is
assumed to be the least risky and would be appropriate in the advent of a Covid wave.

But this action is economically costly for agents. Thus agents are more likely to
choose a middle ground of going out with precautions than staying home. This creates
a negative externality as the rate of infection (R) increases, creating excessive pressure
on the public healthcare system. A planner would like to avoid such a situation and
would thus be more cautious than the agent when choosing a somewhat or highly
risky action. This misalignment of preferences makes it difficult for the planner to
communicate truthfully.

Our model, as explained in the next section, predicts that the planner would predict
the riskiest action when the state of the world is indeed good. Since the planner is more
cautious than the agent, following such recommendations agents will obey. However,
the planner will never send a staying-home recommendation since agents will not follow
such a recommendation and would choose to learn by themselves. Since scientific
learning is difficult for the agents, this can result in many people choosing a riskier
action than what is socially optimal. Thus it is optimal for the planner to not send any
recommendation in the worst and mix between suggesting to go out with precaution
and saying nothing in the middle state. In that case, following no recommendation
the agents will correctly update that the state cannot be good, thus the probability of
choosing the riskiest action would be driven to zero.

We argue that there are real-world examples of such policies being implemented
during the current pandemic. To elaborate let us consider two examples from the US
and India in April-May 2021. On May 13th CDC announced that fully vaccinated
Americans can go back to pre-Covid activities without masking despite criticism in
media. This significantly increased the business activities across parts of the country
where many citizens have been fully vaccinated. Around the same time, India was
experiencing one of the worst second waves in the world but when PM addressed the
nation on April 20th, he appealed to individuals and states to practice caution but
did not mandate a nationwide lockdown. Most states and local authorities ended up
imposing localized lockdown in the following weeks. We argue that both strategies
were optimal given the prior belief and preference misalignments.
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3 Model

3.1 Primitives
Let us consider a one-period model of an economy with a planner and a representative
agent. The payoff relevant set of states is given by Ω = {ωH , ωL, ω0} where ωH is the
good state, ωL represents a bad state where caution is needed and ω0 represents a dire
state where the normal activity must be halted. The corresponding action set is given
by A = {aH , aL, a0} where aH , aL, and a0 denote the high, low and zero level of action
chosen by the agent.

The utility function u : A × Ω → R of the agents are as follows:

u(a, ω) =


αH − i(ω)βH for a = aH

αL − i(ω)βL for a = aL

0 for a = a0

where i(ω) =


0 for ω = ωH

i for ω = ωL

1 for ω = ω0

where i ∈ (0, 1). In the payoff function αi denotes the positive impact(or benefit)
of action ai. For simplicity we assume the positive impact to be state-independent.
This is highest for action aH , independent of the state. The parameter βi denotes the
negative impact(or cost) of action ai. Unlike the positive factors, the negative impact
of an action is state-dependent and i(ω) denotes the marginal impact of the negative
factors in state ω.

The utility function models a scenario where in the good state ωH , there are no costs
of choosing any action. However, the costs increase as the state gets worse. However,
choosing a0 does not bear any costs and pays zero in all states. Thus without perfect
information a0 denotes a riskless choice and aH and aL would be risky choices, where
the risk is higher for the former action. We further assume that

αH > αL > 0; βH > βL > 0;

αL < βL; αL > iβL; αH < βH

αH − βH < αL − βL < 0

This set of assumptions ensures that if the agent knows the true state, i.e., under full
information, they will optimally choose ai is state ωi for i = H, L or 0.

The misalignment of preference between the planner and the agent arises due to the
presence of a negative externality. When choosing aH and aL the agents only consider
the private cost of disease contraction, however, in presence of negative externality the
planner faces an additional cost. Thus the utility function of the planner is thus given
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by,

v(aH , ω) = u(aH , ω) − i(ω)ν

v(aL, ω) = u(aL, ω) − i(ω)ν

v(a0, ω) = u(a0, ω)

where ν ∈ (0, αL
i − βL) is the social cost ignored by the agent, that measures the level

of preference misalignment. Note that if ν < αL
i − βL, then v(aL, ωL) > v(a0, ωL)

aL would be the optimal choice in state ωL under full information. Since i(ωH) = 0
and a0 maximizes u(a, ω0), the planner will also choose action ai in state ωi under
full information. Thus the preference misalignment is an artifact of the lack of full
information.

3.2 Learning Technology
Both DMs (the planner and the agent) enter the period with a common prior belief µ0 ∈
∆(Ω) and are Bayesian. Assume that µ0 ∈ int(∆(Ω)), i.e., the true state is learnable
and both the DMs have access to the same learning technology. We assume there is
no inherent asymmetry in terms of access to information. We want to show under
this assumption also the planner can manipulate the agent’s choice by appropriately
choosing learning and communication strategies.

Let π(s, ω) denote the signal structure chosen by a DM to update his belief about
the state ω, where s ∈ S denotes a typical signal from the set of possible signals S.
WLOG we can consider a set of signals as a set of possible actions, i.e., S = A 1. Let
γi denote the posterior belief upon observing signal ai,

γi(ωj) = Pr(ωj |s = ai) = π(ai, ωi)µ0(ωj)∑
k π(ai, ωk)µ0(ωk)

As shown by Matejka and McKay (2015), Caplin, Dean, and Leahy (2018) we can ab-
stract away from the information structure π(ai, ω) and consider directly the posterior
distribution γi generated by the signal structure. This is because if two separate signal
structures generate the same posterior distribution, the DM would choose the one with
lower cost as they are equally Blackwell informative. Since S = A this implies only
one action is chosen at any posterior.

We can also define corresponding choice probabilities given any posterior belief over
state as P (a, ω), i.e, the conditional (posterior) probability of choosing action a in state
ω and P (a), i.e., the unconditional (prior) probability of choosing action a. By Bayes

1If the DM chooses a signal structure that generates two separate signals for the same action then such
a signal structure is equally Blackwell informative as the one where each signal generates a unique action.
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plausibility,

∑
k

P (ai, ωk)µ0(ωk) = P (ai)

Following the tradition of the RI literature, we define the cost of learning function over
choice probabilities P (a, ω) instead of γi directly. Since each action is chosen only at
one posterior, the relation between the two objects is given by,

γi(ωj) = P (ai, ωj)µ0(ωj)∑
k P (ai, ωk)µ0(ωk) .

The cost of learning function is given by the Shannon mutual entropy between the
conditional and unconditional choice probabilities,

K(λ, µ0) = λD(P (ai, ωj)||P (ai)); where D(p||q) =
∑

x

p(x) ln p(x)
q(x)

and λ ∈ (0, ∞) denotes the marginal cost of learning. From Matejka and McKay (2015)
we know the optimal choice probabilities take the logistic form as follows,

P (ai, ωj) = P (ai)z(ai, ω)∑
k P (ak)z(ak, ωj) ; where z(ak, ωi) = exp(u(ak, ωk)/λ).

(logistic solution)

We assume that the payoff functions and the cost functions of both the agent and the
planner are common knowledge.

3.3 Strategic Communication
In presence of negative externality in this model, it is socially optimal for the planner to
learn and communicate the information to the agent. However, because of the negative
externality truthful communication between the planner and the agent may not be
possible. This implies there are possibilities for strategic communication between the
planner and the agent. The timeline of the strategic communication problem is as
follows:

1. All DM enter with the common prior µ0 ∈ ∆(Ω)

2. The planner chooses a learning strategy

3. The planner chooses a communication strategy

4. Agent chooses optimal learning strategy

5. Agent chooses the optimal action

6. Payoffs are realized for all DMs
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The learning technology available to both the DMs is as explained in the previous
section with common λ. The communication strategy of the planner consists of two
types of actions, recommend an action a or not recommend at all. The separation of
the learning and communication strategy of the planner allows that truth-telling is not
necessary.

For the rest of the analysis, we assume that any recommendation can be costlessly
verified by the agent. Thus the planner cannot lie but can hide information. This can
be implemented by assuming a negligible cost of verification for the agent.

Note that, since learning is costly, it is without a loss that we can assume agents
choose their learning strategy after observing the information provided by the planner.
This is true because in the state where after obtaining the recommendation from the
planner if the agent decided to obey the recommendation, then learning before the
recommendation will generate sunk cost of learning (Ghosh, 2020).

3.4 Decision Problem
Given the cost of the learning function, the agents want to maximize the net expected
utility conditional on information obtained from the planner. The one-to-one rela-
tionship between the posterior belief over states and conditional choice probabilities
allows us to write the agent’s strategy as only choosing P (a, ω) optimally subject to
the recommendation of the planner. Let µ denote the interim belief of the agent upon
observing the (no) recommendation of the planner. In case, the planner does not rec-
ommend any action, the interim belief coincides with the prior belief, µ0, of the agent.
Thus the agent’s problem is as follows:

max
P (a,ω)

Eµu(P (a, ω)) − K(λ, µ).

Given the decision problem of the agent the planner chooses a learning strategy
γ : Ω → ∆(ω) and a recommendation strategy σ : ∆(Ω) → A ∪ ∅ to maximize the
social welfare as follows:

max
σ,γ

v(P (a, ω|σ(γ)), ω) − K(λ, µ0)

where P (a, ω|σ) denote the optimal action chosen by the agent where the interim belief
µ is obtained using γ and σ(γ).
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4 Results

4.1 Learning Problem

4.1.1 Agent’s Learning Startegy

To solve for the optimal recommendation policy σ(ω) for the planner we will approach
the problem backward and solve the learning problem of the agent first. Given the
learning strategy, we will find the optimal recommendation and learning strategy of
the planner.

Lemma 1. Agents’ optimal learning strategy divides the simplex over states, ∆(ω) into
distinct consideration sets, and within each consideration set the optimal distribution
of posterior beliefs is constant, i.e., independent of specific interim belief µ.

The proof of the lemma is given in the appendix, here we describe the main intuition
using figure 2. The proof of the lemma lies on a property of a class of cost function,
namely, uniform posterior separable cost function, of which the Shannon entropy cost is
a key example. The property, known as likelihood invariant posterior, or LIP, (refer to
Caplin, Dean, and Leahy (2017)), indicates that for two decision problems the optimal
posterior obtained in the first decision problem remains optimal in the second decision
problem if the prior belief in the second decision problem keeps the optimal posterior
from the first problem feasible.

In the two-state, two-action example, the optimal posterior is obtained by concav-
ifying the net value function of the two actions. The LIP property means if the new
prior lies in the interval joining the two optimal posteriors (for the two states) then
the concavification process at the new prior would generate the same set of posteriors.
The diagram below illustrates,

Figure 1: LIP: two-state, two-action problem
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Figure 2: Agent’s problem: consideration set

In figure 1, the black and the blue curve denote the net expected payoff from the
two actions for different values of the probability of state ω1. The red line concavifies
the net expected payoff from the two actions. Suppose in the first problem, the prior
is µ and the concavification generates the optimal posteriors as γa and γb. If in the
second problem the prior µ′ lies within [γa, γb], i.e., the optimal posterior is admissible
under the new prior, then the optimal posterior under µ′ would also be given by γa

and γb, since the concavification at µ′ generates the same result at µ′ as in µ.
We extend that in our example of three states and actions. In figure 2, consider

any point in the interior of △HL0 as the interim belief of the agent given the planner’s
recommendation policy. Suppose the optimal posterior belief generated by this belief
are the extreme points of this triangle, γHL0. By LIP this means for all interim belief
µ ∈ int(△HL0) the posterior belief thus generated is admissible and hence for all such
beliefs, the optimal posterior would be generated by the same set of posteriors, namely
the extreme points of △HL0.

Since all beliefs in the interior of △HL0 generate the same optimal posterior, we can
find the extreme points of △HL0 by assuming all three actions have equal unconditional
choice probabilities. The rest of the proof shows, using LIP, a similar concavification
argument is applicable for all beliefs in the interior of the triangle HL0, including
the one that generates equal ex-ante choice probabilities. Also, for any belief on the
boundary of △HL0 or outside, at least one action is chosen with zero probability,
generating the consideration set for all three actions.

Using similar logic we identify the consideration set for every pair of actions and
residually identify the consideration set for single actions as well. Note that, the con-
sideration sets need not be symmetric since the payoff structure is not symmetric. The
process of generating the consideration set is general and can be applied to any finite
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set of states. Also, the consideration set that we identify here coincides with the de-
scription given in Caplin, Dean, and Leahy (2018), but our method is computationally
easier.

For the rest of the paper, let us assume the common prior µ0 ∈ △HL0, i.e., in
absence of the planner’s recommendation the agent will choose all actions with positive
probability. The model can solve all other cases, but this would be the most interesting
case.

4.1.2 Planner’s Learning Problem

Given the learning strategy of the agent for a given interim belief µ : σ(µ) → ∆(Ω), we
can solve for the planner’s optimal learning strategy and the optimal recommendation
strategy. We first show that learning is not optimal for the planner if the level of
externality is substantially low.

Lemma 2. Given any ν > 0 there exists a λ(ν) > 0 such that learning is preferred to
not learning for λ ≤ λ(ν), i.e., cost of learning is sufficiently small.

The proof of the lemma is given in the appendix. For the rest of the paper, we will
assume that for any ν, λ ≤ λ(ν) such that learning is preferable by the planner.

4.2 Non-Strategic Communication

4.2.1 Optimal Strategy under Compliance

The following lemma shows that under misalignment of preferences, complete com-
pliance is not possible. Complete compliance refers to a strategy where the planner
learns about each state and truthfully recommends the appropriate action. Follow-
ing this recommendation, the agent chooses the recommended action without further
learning. For example, if the planner’s posterior belief suggests a0 is the optimal action,
he will recommend a0 and the agent will choose a0 without further learning.

Lemma 3. Complete compliance cannot be an equilibrium strategy.
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Figure 3: Planner’s problem: consideration set (in red) under complete compliance

The proof of the lemma is given in the appendix, here we explain the main intu-
ition using figure 3. Since the learning technology for the planner and the agents are
identical, we can solve the planner’s problem using a similar technique as described in
lemma 1. But due to the misalignment of preferences, the consideration set is different
for the planner, ie., for certain beliefs when the agent prefers to choose action aj the
planner may not recommend choosing action aj .

In figure 3 the red triangle denotes the consideration set for all three actions for the
planner under complete compliance. As can be seen from the diagram, if the planner
truthfully reveals the state, the intermediate belief of the agent would be such that
following aH or aL recommendation the belief would lie in the consideration of H or L

alone, resp. But for the recommendation of a0, the optimal posterior belief lies outside
the set □0, i.e., of choosing a0 with probability 1, the agent will choose to learn,
following a0 recommendation. Thus complete compliance cannot be an equilibrium
here.

4.2.2 Optimal Strategy under Truth-telling

Before we solve the optimal strategy for the planner, let us consider the restricted
strategy space for the planner. Suppose the planner is forced to truthfully communicate
the optimal action in each state. As shown in the previous section complete compliance
is not possible for the recommendation of a0. To find the equilibrium under truthful
communication the planner incorporates this into his strategy.

Note that the restriction is imposed on the communication strategy, not the learning
strategy of the planner. Thus it is possible for the planner to not learn at all and
recommend all actions with probability µ0. This would be an uninformative equilibrium
since the communication would not affect the intermediate belief of the agent. We
assume away from such equilibrium and only concentrate on informative equilibrium,
i.e, where µ(ai) ̸= µ0 for any recommendation ai.
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The following lemma incorporates the insight from the previous section and shows
that even under truthful communication the planner would not choose an informative
enough learning strategy that ensures no learning by the agent.

Lemma 4. Under the assumption of truthful communication, every informative equi-
librium induces learning by the agent following only the recommendation a0.

Proof of the lemma is given in the appendix. The main intuition is as follows: the
equilibrium under truthful communication can take one of three forms. In all cases,
the agent follows recommendation of aH and aL and the planner chooses the learning
strategy such that µ(aH) ∈ □H, µ(aL) ∈ □L. But for a0, there are three feasible
strategies, either µ(a0) ∈ △HL0 and agents consider all three action with positive
probability when learning, or µ(a0) ∈ □L0 and agents choose aH with probability 0
following recommendation of a0 or µ(a0) ∈ □H0 and agents choose aL with probability
0 following recommendation of a0. We show that each strategy generates fixed point
mapping making them equilibrium strategies as well.

4.3 Strategic Communication
In this section, we consider the optimal strategy of a persuasive planner under commit-
ment. We maintain our assumption that any recommendation can be costlessly verified
but hiding information is possible. Thus the commitment in this framework reduces
to committing to a mixed strategy under no recommendation since no verification is
feasible in that case.

We find that under commitment the planner never optimally mixes aH with a0 but
mixing aL and a0 can be optimal. Before we explore the optimal strategy of the planner
let us write the expected payoff of the planner under commitment. Given p ∈ [0, 1] and
actions ai, aj ∈ A let γp,ij , σp,ij denote a strategy whereupon observing signals other
than ai or aj the agent complies, but under no recommendation the agent’s belief would
be such that the planner has observed ai with probability p, and aj with probability
1 − p. Let

V (γp,ij , σp,ij) = max γp,ij , σp,ijv(P (a, ω), ω|γp,ij) − K(λ, µ0)

denote the expected social welfare following γp,ij , σp,ij . The following theorem outlines
the structure of the equilibrium under commitment.

Theorem 1. Under commitment, in equilibrium the planner

1. Recommend aH upon observing signal aH

2. Recommend aL upon observing signal aL with probability q̂ ∈ (0, 1)
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3. No recommendation otherwise.

Following this the agent optimally chooses

1. Follow recommendation for both aH and aL

2. Given no recommendation, update his belief to γp̂,L0 and learn using the consid-
eration set □L0.

Figure 4: Equilibrium under Commitment

The proof of the proposition is given in the appendix. Here we explain the main
intuition of the result using figure 4. The truthful communication shows that compli-
ance does not occur only for a0, thus in any equilibrium, under compliance, the planner
would try to improve the payoff for a0 signal. Since the learning and the communica-
tion strategy can be separated (through no recommendation), given commitment, the
planner can be better off by mixing a0 with either aL.

To show that such an equilibrium exists, we assume that for any q ∈ (0, 1) a
posterior distribution γP with the above structure exists. We use this belief to find the
optimal learning choice of the agent and plug this into the planner’s learning strategy.
This formalizes as a fixed point problem for the planner’s strategy γ. We find sufficient
conditions in terms of q such that a fixed point exists. The optimal choice q̂ maximizes
the payoff for the planner.

4.4 Discussion of Assumptions
The crucial assumption in our model is that there is no real asymmetry of information
since all DMs in the economy can learn about the underlying state if they pay the cost
of learning.
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We introduce a standard RI cost function, given by Shannon mutual entropy in an
otherwise standard information design framework with three actions and three states.
The characterization of the optimal policy relies heavily on the form of the cost function
chosen here. However, the intuition behind the consideration set does not rely on the
specific form of the cost function. As shown in lemma 1, we derive the consideration sets
using the LIP property, which identifies a much larger set of cost functions, namely the
UPS cost function, of which Shannon entropy is one example only. The concavification
argument applies to any cost function in this class of functions.

But without the explicit form of the cost function, we would not be able to iden-
tify the extreme points of the consideration sets, even though we can show the exis-
tence of such points. Earlier papers in the literature (Kamenica and Gentzkow(2014),
Matyskova (2018), Bloedel, and Segal (2018) ) have used the Shannon entropy func-
tion for obtaining closed-form analytical solutions. The properties of Shannon cost
functions make it suitable for integrating the information design framework.

We continue with the assumption of commitment as is standard in the persuasion
literature however, we weaken it by only considering commitment only applies for no
recommendation. This requires assuming a negligible cost of verification, which may
not be realistic in all cases. However, solving the optimization problem is significantly
more difficult than verifying whether a solution is optimal, our assumption holds in
most cases.

In this paper, we assume that both sides face the same cost of learning. If we
compare this model with one where only the agent faces costs of learning, the planner
will optimally choose the extreme points of the consideration set and ensure that the
agent never learns (see Matyskova, 2018).

Whereas if the agent does not have access to learning and the planner faces a cost of
learning, then the optimal strategy would be given by the planner’s consideration sets
and complete compliance under commitment. Failure of compliance is suboptimal in
this model since the posterior generated by the planner’s learning is more informative
than the prior and the agent does not have access to information.

Thus the both-sided cost is crucial in our framework and we find that even in this
case the planner can manipulate the action of the agent by strategically choosing the
consideration set for the agent.

5 Scientific Learning
In this section, we explore the role of strategic communication in scientific learning by
the planner. For this, we will compare the learning outcome under two regimes, one
under strategic communication and the other under full compliance. Our objective is
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to explore whether the planner would learn more under full compliance than under
truthful communication.

Note that learning outcomes are captured by a distribution of posterior beliefs over
∆(Ω). To be able to compare different learning strategies we thus would need a measure
over this set. Since Blackwell ordering is a partial order we consider a different measure
that is relevant for our context.

Let us define the mistake in learning as state ωi to be

PM (ωi) ≡
∑

j∈A\{i}
P (aj , ωi)

where ai denote the optimal action in state ωi under full information and P (aj , ωi)
denote the probability of choosing action aj in state ωi. Thus for a given learning
strategy γ we can denote the vector of learning mistake as (PM (ωH), PM (ωL), PM (ω0)).
Since the cost of making mistakes is not the same across different states, this measure
captures the state specific learning mistakes the planner would make under the two
different regimes.

Since making mistakes is not equally costly in each state, let us define crucial state
for any set of parameters. State ωi is a crucial state if minj ̸=i

{
v(ai, ωi) − v(aj , ωi)

}
,

where ai is the optimal action in ωi, is highest in state ωi. Thus in the crucial state
making a mistake is most costly. Our main result in this section is given by the following
theorem,

Theorem 2. The planner makes more learning mistakes in crucial states under strate-
gic communication than under full compliance.

The proof of the theorem is in the appendix. The main intuition behind the proof
is as follows: under strategic communication the payoff from making mistake changes
for actions aL and a0 since no communication mixes the two. This reduces the cost of
making mistakes in different states. Since the learning strategy is responsive to change
in payoff difference the two learning strategies are different. We conclude the proof
by showing that in the crucial state the change in the payoff is more prominent, thus
learning reduces more in those states.

The main implication of this result is that strategic communication can hinder
scientific learning, especially when it is more costly to make learning mistakes. Under
strategic communication, the planner cannot truthfully communicate the state which
affects their learning communication and learning strategies. To ensure the agents
choose the socially optimal action the planner sacrifices learning by themselves and let
the agent learn on their own.
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6 Conclusion
We study a model of strategic communication between a planner and agents in an econ-
omy in presence of externality. Under the assumption that learning is costly, we solve
for the optimal information policy of the planner. We find that the planner truthfully
reveals the signal when the action is less preferred by him. Otherwise, he strategically
manipulates the consideration set of agents leading to welfare improvement.

Our results lie on the assumption of the Shannon entropy cost function. One future
direction would be to relax this assumption and study the optimal policy of the planner
for a larger set of cost functions.

Also, we assume that the agents in this model do not face any cost of verification
following any recommendation. It would be interesting to explore what would happen
if we relax the assumption and assume that the agent pays a small cost of verification,
smaller than the cost of learning.
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A Appendix: Proofs

A.1 Proof of Lemma 1
Proof. To prove the lemma let us first note some important properties of the cost
function. The cost function K(.) is proportional to the Shannon mutual entropy cost
function, which belongs to the class of uniform posterior separable (UPS) cost functions,
as defined in Caplin, Dean, and Leahy (2017). The UPS cost functions are described
as follows:

K(µ, Q) =
∑

γ∈Γ(Q)
Q(γ)T (γ) − T (µ)

where T (.) is convex. In the case of the Shannon cost function, the convex function
is given by the Shannon entropy function. The defining characteristic for UPS cost
functions is the Likelihood Invariant Posterior (LIP) property. LIP implies that for a
given decision problem (µ, A) is a posterior distribution γ ∈ ∆(∆(Ω)) is obtained as
the optimal learning strategy then it will remain an optimal posterior for any µ′ such
that γ is admissible under µ′ using Bayes law.

Using the LIP property we want to argue that we can divide the simplex over the
state space ∆(Ω) into the consideration set. A consideration set for action i here defines
a set of possible prior beliefs where only action i is chosen. In our 3-action example,
we can thus find 7 consideration sets.

Let us start with the consideration set where all three actions are chosen. One
member of such a consideration set would be a belief, say µHL0 such that P (aH) =
P (aL) = P (a0) = 1/3, i.e., ex-ante all actions are chosen with equal probabilities.
Plugging these values in logisticsolution we get,

P (a, ω) = z(a, ω)∑
k z(ak, ω) ,

This implies for an agent with prior µHL0 it is optimal to choose a learning strategy
where upon observing signal i the agent will choose action i and the probability of
obtaining signal i is state ω (this is equivalent to the probability of choosing action i

in state ω) is described by the above equation. Note that, µHL0 ̸= µ0, thus to find the
µHL0 that generates an equal probability of choosing any action we solve the following
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set of three equations,

µHL0(ω0)P (a0, ω0) + µHL0(ωL)P (a0, ωL) + µHL0(ωH)P (a0, ωH) = P (a0) = 1/3

µHL0(ω0)P (aL, ω0) + µHL0(ωL)P (aL, ωL) + µHL0(ωH)P (aL, ωH) = P (aL) = 1/3

µHL0(ω0)P (aH , ω0) + µHL0(ωL)P (aH , ωL) + µHL0(ωH)P (aH , ωH) = P (aH) = 1/3

Plugging in the values of P (a, ω) we solve for µHL0. Given µHL0 we can find the
posterior belief upon observing signal i as follows,

γi
HL0(ωj) = P (ai, ωj)µHL0(ωj)∑

k P (ai, ωk)µHL0(ωk) .

This would be the optimal strategy of the DM only if the prior µ0 makes the γHL0

admissible. To prove that let us consider the convex set generated by the three posterior
beliefs γk

HL0 for k = H, L, and 0. This forms a triangle within the simplex ∆(Ω), which
we will denote as △HL0. Consider any arbitrary prior belief µ′ ∈ int(△HL0). For
any such µ′ the posteriors γi

HL0 are feasible, i.e., can be obtained using the Bayes rule
for some unconditional choice probability distribution P (ai).

Furthermore, since µHL0 can be written as a convex combination of γk
HL0 we know

that µHL0 ∈ int(△HL0). Hence, for all µ′ ∈ int(△HL0) the optimal learning strategy
is given by γk

HL0. Thus △HL0 generates the consideration set of all three actions.
If the common prior µ0 /∈ int(△HL0), then µ0 cannot be written as a convex com-
bination of γi. But this would imply at µ0 at least one action is chosen with zero
probability, contradicting our assumption that at µ0 all three actions are chosen with
strictly positive probability.

Next, we consider the consideration set for two actions only. WLOG let us inves-
tigate the consideration set for actions aH and aL, this includes all prior beliefs µ′

where P (a0) = 0. To construct this set let us start with the extreme points of △HL0.
Consider prior beliefs µ1 = γH

HL0 and µ2 = γL
HL0. We know the agents choose aH with

probability 1 if his belief is ar µ1 and similarly aL with probability 1 for µ2. Thus for
any arbitrary belief µ′ ∈ int(γH

HL0γL
HL0) would belong to the consideration set of aH

and aL only.
Note that, if P (a0) = 0 then the DM only obtains two signals aH and aL. Thus the

resultant posterior belief over states would have only two beliefs in the support, one for
each signal aH and aL. Both these two belief would assign a probability of zero to state
ω0since P (a0, ωH) = P (a0, ωL) = 0. Thus we can conclude that the optimal posterior
belief would lie on the boundary of the simplex where µ(ω0) = 0, where P (a0) = 0.

On this line segment, we can find the posterior beliefs for choosing only aH and
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aL using the same method as before and assuming P (aH) = P (aL) = 1/2. This
generates the other boundary of the consideration set for aH and aL. Joining the two
sets of extreme points we find the consideration set HL which takes the shape of a
trapezoid. Similarly, we find the consideration set of all other sets of two actions. The
consideration sets for single actions can then be characterized residually defined by the
boundary of the two-action consideration sets.

Caplin, Dean, and Leahy found that the consideration set can be characterized by
finding the convex set at the intersection of a set of linear equations. For example, to
find γH

HL0 we need to consider the intersection of the two following equations,

f(γ, aH , aL) = 1 and f(γ, aH , a0) = 1

where

f(γ, a, b) =
∑
ω

z(b, ω)
z(a, ω)γ(ω).

It is straightforward to verify that at γH
HL0 indeed f(γ, aH , aL) = f(γ, aH , a0) = 1.

Thus both the methods generate the same set of consideration sets but instead of
using a set of linear equations we derive the extreme points of the consideration by
applying LIP and solving for the optimal posterior when all actions are chosen with
equal probabilities.

A.2 Proof of Lemma 2
For any ν > 0 if λ → 0, learning is not costly and by learning the planner can get a
better payoff. The net payoff function under learning is given by,

VL = Eû(P (a, ω)|µ0) − K(λ, µ0)

As λ increases since K(.) = λD(P (a, ω)||P (a)), the cost of learning increases. Also, as λ

increases the probability of mismatching state increases, which implies Eû(P (a, ω)|µ0)
decreases with λ. However, for high λ the benefit from not learning and leaving it on
the agent is also smaller since the agent doesn’t learn as much as well. This implies,
that there exists λ sufficiently small such that learning is better than not learning for
the planner.

A.3 Proof of Lemma 3
Proof. Let us consider the learning problem of the planner under complete compli-
ance, i.e., the agents obediently follow the recommendation of the planner. Complete
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compliance thus implies if the planner recommends ai the agents will choose ai with
probability 1. The learning problem of the planner and the agents is identical except
z(a, ω). Let us denote zC(a, ω) = exp(v(a, ω)/λ), i.e., the z(.) counterpart for the
planner under compliance. Since there is no strategic interaction, the planner always
recommends the signal he obtains, and the optimal posterior belief distribution is given
by,

γC(ai, ωj) = zC(ai, ωj)µ(ωj)
PC(ah)zP (aH , ωj) + PC(aL)zP (aL, ωj) + PC(a0)zP (a0, ωj)

If complete compliance is an equilibrium then we will get,

γH
C = (γC(aH , ω0), γC(aH , ωL), γC(aH , ω0)) ∈ □H

γL
C = (γC(aL, ω0), γC(aL, ωL), γC(aL, ω0)) ∈ □L

γ0
C = (γC(a0, ω0), γC(a0, ωL), γC(a0, ω0)) ∈ □0

If any belief γ ∈ □H then γ will satisfy the following two inequalities that outline the
boundary of □H,

f(γH , aH , aL) ≤ 1

f(γH , aH , a0) ≤ 1

where

f(γ, a, b) =
∑
ω

z(a, ω)
z(b, ω) γ(ω).

We can rewrite the above inequalities as follows,

f(γH
C , aH , aL) = z(aL, ω0)

z(aH , ω0)
zC(aH , ω0)µ(ω0)∑
a∈A P (a)zC(a, ω0) + z(aL, ωL)

z(aH , ωL)
zC(aH , ωL)µ(ω0)∑
a∈A P (a)zC(a, ωL)

+ z(aL, ωH)
z(aH , ωH)

zC(aH , ωH)µ(ωH)∑
a∈A P (a)zC(a, ωH) ≤ 1

f(γH
C , aH , a0) = z(a0, ω0)

z(aH , ω0)
zC(aH , ω0)µ(ω0)∑
a∈A P (a)zC(a, ω0) + z(a0, ωL)

z(aH , ωL)
zC(aH , ωL)µ(ω0)∑
a∈A P (a)zC(a, ωL)

+ z(a0, ωH)
z(aH , ωH)

zC(aH , ωH)µ(ωH)∑
a∈A P (a)zC(a, ωH) ≤ 1
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Rearranging terms we get,

z(aL, ω)
z(aH , ω)

zC(aH , ω)µ(ω)∑
a∈A P (a)zC(a, ω) = zC(aH , ω)

z(aH , ω)
z(aL, ω)

zC(aL, ω)
zC(aL, ω)µ(ω)∑
a∈A P (a)zC(a, ω)

= zC(aH , ω)
z(aH , ω)

z(aL, ω)
zC(aL, ω)γC(aL, ω)

This implies,

f(γH
C , aH , aL) = exp −ν

λ
exp ν

λ
γC(aL, ω0) + exp −iν

λ
exp iν

λ
γC(aL, ωL) + γC(aL, ωH)

= γC(aL, ω0) + γC(aL, ωL) + γC(aL, ωH) = 1,

hence, the first inequality is satisfied. Similarly, we can show,

z(a0, ω)
z(aH , ω)

zC(aH , ω)µ(ω)∑
a∈A P (a)zC(a, ω) = zC(aH , ω)

z(aH , ω)
z(a0, ω)

zC(a0, ω)
zC(a0, ω)µ(ω)∑
a∈A P (a)zC(a, ω)

= zC(aH , ω)
z(aH , ω) γC(a0, ω)

since z(a0, ω) = zC(a0, ω) = 1. This implies

f(γH
C , aH , a0) = exp −ν

λ
γC(a0, ω0) + exp −iν

λ
γC(a0, ωL) + γC(a0, ωH) < 1

since ν > 0 and ∑
ω∈Ω γP (a0, ω) = 1. Thus γH

P ∈ □H.
Next, we consider γL

P which will lie in □L if

f(γL
C , aL, aH) ≤ 1

f(γL
C , aL, a0) ≤ 1

Using similar adjustments we can write,

f(γL
C , aL, aH) =

∑
ω∈Ω

zC(aL, ω)
z(aL, ω)

z(aH , ω)
zC(aH , ω)

zC(aH , ω)µ(ω)∑
a∈A P (a)zP (a, ω)

= exp −ν

λ
exp ν

λ
γC(aH , ω0) + exp −iν

λ
exp iν

λ
γP (aH , ωL) + γC(aH , ωH)

= γC(aH , ω0) + γC(aH , ωL) + γC(aH , ωH) = 1.

Comparing aL and a0 we get,

f(γL, aL, a0) =
∑
ω∈Ω

zC(aL, ω)
z(aL, ω)

zC(a0, ω)µ(ω)∑
a∈A P (a)zC(a, ω)

= exp −ν

λ
γC(a0, ω0) + exp −iν

λ
γC(a0, ωL) + γC(a0, ωH) < 1
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since ν > 0 and ∑
ω∈Ω γC(a0, ω) = 1. This implies γL

C ∈ □L.
Now we consider γ0

P which will lie in □0 if

f(γ0
C , a0, aH) ≤ 1

f(γ0
C , a0, aL) ≤ 1

Using similar adjustments as before we get,

f(γ0
C , a0, aH) =

∑
ω∈Ω

z(aH , ω)
zC(aH , ω)γC(aH , ω)

= exp ν

λ
γC(aH , ω0) + exp iν

λ
γC(aH , ωL) + γC(aH , ωH) > 1

since ν, i > 0 and ∑
ω∈Ω γC(aH , ω) = 1. Also,

f(γ0
C , a0, aL) =

∑
ω∈Ω

z(aL, ω)
zC(aL, ω)γC(aL, ω)

= exp ν

λ
γC(aL, ω0) + exp iν

λ
γC(aL, ωL) + γC(aL, ωH) > 1

since ν, i > 0 and ∑
ω∈Ω γC(aL, ω) = 1. Thus γ0

C /∈ □0. This implies if the planner
communicates the signal truthfully the agent will be better off by deviating and learning
to follow a0 recommendation. Hence, proved.

A.4 Proof of lemma 4
Proof. In this lemma, we explore whether the agent chooses to learn when the planner
truthfully recommends the action based on the observed signal. Since learning is
costly for the agent, he only chooses to learn by himself if his interim belief is not
in a consideration set that contains only one action, e..g, □L. The previous lemma
shows even when agents perfectly comply with the planner’s recommendation planner
chooses a learning strategy such that the posterior belief following the recommendation
of aH and aL would lie in □H and □L respectively, i.e., the agent would not have any
incentive to learn further. However, the posterior belief following the recommendation
of a0 does not lie in □0, where the agent would optimally choose to learn.

Under truthful communication, since the agent has the opportunity to learn after
the recommendation, it would always be optimal for the planner to choose a learning
strategy such that the posterior belief following aH or aL lies in □H and □L respec-
tively. We would show the following strategy would be the optimal strategy under
truthful communication:

• agent complies with aH and aL
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• agent does not comply with a0 recommendation

Let us consider a strategy as described above. Let vT denote the expected payoff
of the planner under truthful communication. Since following a0 the agent learns by
himself, the planner’s payoff needs to incorporate the agent’s choice. Suppose post
learning the agent’s belief belongs to the consideration set CS(JK), then the agent’s
optimal posterior is given by the extreme points of the consideration sets, i.e.,

vT (a, ω) = PJK(aJ)v(aJ , ω) + PJK(aK)v(aK , ω))

where PJK(a) is unconditional probability of choosing action aJ in consideration set
CS(JK) given interim belief µ(ω) is equal to planner’s optimal posterior choice γT .

Under the strategy of compliance in aH and aL only, we will consider four possible
strategies, namely,

• γ0
T ∈ △HL0

• γ0
T ∈ □L0

• γ0
T ∈ □H0

• γ0
T ∈ □0

where γi
T denote the posterior belief of the planner following a signal ai in the truthful

communication game. We will show that only the first three are feasible strategies and
will characterize the equilibrium strategy.

Let us consider the following strategy where aH and aL recommendations are fol-
lowed but after a0 the interim belief lies in △HL0. Under this strategy γT , vT (aH , ω) =
v(aH , ω) and vT (aL, ω) = v(aL, ω) for any ω ∈ Ω but

vT (a0, ω) = PHL0(a0)v(a0, ω) + PHL0(aL)v(aL, ω) + PHL0(aH)v(aH , ω) ∀ω ∈ Ω.

where P (a)HL0 denotes the probability of action a being chosen following a recom-
mendation of a0 and it is a function of γT . Following a similar exercise as of lemma
1, we can find the optimal learning strategy γ̂T given vT (a, ω) and prior belief µ0. To
show this is a feasible strategy, we will first check indeed γH

T ∈ □H, γL
T ∈ □L and

γ0
T ∈ △HL0.

The necessary and sufficient condition for γH
T ∈ □H is given as follows

f(γH
T , aH , aL) ≤ 1

f(γH
T , aH , a0) ≤ 1
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Using similar rearrangement of terms as in lemma 3 we get,

f(γH
T , aH , aL) =

∑
ω∈Ω

zT (aH , ω)
z(aH , ω)

z(aL, ω)
zT (aL, ω)γT (aL, ω)

=
∑
ω∈Ω

γT (aL, ω) = 1

and,

f(γH
T , aH , a0) =

∑
ω∈Ω

zT (aH , ω)
z(aH , ω)

1
zT (a0, ω)γT (a0, ω)

= exp −ν − PHL0(aH)(αH − βH − ν) − PHL0(aL)(αL − βL − ν)
λ

γT (a0, ω0)

+ exp −iν − PHL0(aH)(αH − iβH − iν) − PHL0(aL)(αL − iβL − iν)
λ

γT (a0, ωL)

+ exp −PHL0(aH)αH − PHL0(aL)αL

λ
γT (a0, ωH)

Note that, limPHL0(a0) f(γH
T , aH , a0) < 1 and f ′(γH

T , aH , aL) > 0 in PHL0(a0). This
implies the planner can choose a learning strategy such that γH

T □H. It can be shown,
under this condition γL

T ∈ □L and γ0
T ∈ △HL0

Similarly, for γL
T ∈ □L the necessary and sufficient condition is

f(γL
T , aL, a0) ≤ 1

f(γL
T , aL, a0) ≤ 1

Using similar rearrangement of terms we get,

f(γL
T , aL, aH) =

∑
ω∈Ω

zT (aL, ω)
z(aL, ω)

z(aH , ω)
zT (aH , ω)γT (aL, ω)

=
∑
ω∈Ω

γT (aL, ω) = 1

and

f(γL
T , aL, a0) =

∑
ω∈Ω

zT (aL, ω)
z(aL, ω)

1
zT (a0, ω)γT (a0, ω)

= exp −ν − PHL0(aH)(αH − βH − ν) − PHL0(aL)(αL − βL − ν)
λ

γT (a0, ω0)

+ exp −iν − PHL0(aH)(αH − iβH − iν) − PHL0(aL)(αL − iβL − iν)
λ

γT (a0, ωL)

+ exp −PHL0(aH)αH − PHL0(aL)αL

λ
γT (a0, ωH)

which will also be less than 1 if γH
T ∈ □H.
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Finally we consider if γ0
T ∈ △HL0. However, there is no necessary and suffi-

cient condition based on f(x, a, b). This is why we start with the necessary condition,
f(x, a, b) > 1 for all a, b ∈ A and x = γ0

T .

f(γ0
T , a0, aH) =

∑
ω∈Ω

zT (a0, ω) z(aH , ω)
zT (aH , ω)γT (aH , ω) > 1

since f(γH
T , aH , a0) < 1. By similar logic f(γ0

T , a0, aL) > 1. Additionally,

f(γ0
T , aH , a0) =

∑
ω∈Ω

z(a0, ω)
z(aH , ω)

zT (a0, ω)
zT (aH , ω)γT (aH , ω) > 1

since f(γH
T , aH , a0) < 1. By similar logic f(γ0

T , aL, a0) > 1.

f(γ0
T , aH , aL) =

∑
ω∈Ω

z(aH , ω)
zT (aH , ω)

zT (a0, ω)
z(aL, ω) γT (aH , ω) > 1

since f(γH
T , aH , a0) < 1. By similar logic f(γ0

T , aL, aH) > 1. However, since this is not
the sufficient condition, we need to check if γT (a0, ωL) > tγ(a0, ωL) + (1 − t)γ(aH , ωL)
for any t ∈ [0, 1], i.e., γ0 lies above BC, γT (a0, ωH) > tγ(a0, ωH) + (1 − t)γ(aL, ωH) for
any t ∈ [0, 1], i.e., i.e., γ0 lies to the left of AB, and γT (a0, ω0) > tγ(aH , ωH) + (1 −
t)γ(aL, ωH) for any t ∈ [0, 1], i.e., i.e., γ0 lies to the right og AC. To determine this let
us compare γ and γT . To begin with,

γT (a0, ωL) = zT (a0, ωL)µ(ωL)
PT (aH)zT (aH , ωL) + PT (aL)zT (aL, ωL) + PT (a0)zT (a0, ωL)

γ(a0, ωL) = z(a0, ωL)µ(ωL)
P (aH)z(aH , ωL) + P (aL)z(aL, ωL) + P (a0)z(a0, ωL)

γ(aH , ωL) = z(aH , ωL)µ(ωL)
P (aH)z(aH , ωL) + P (aL)z(aL, ωL) + P (a0)z(a0, ωL) .

Since zT (a0, ωL) > z(a0, ωL), zT (aH , ωL) < z(aH , ωL), zT (aL, ωL) < z(aL, ωL) and
PT (a0) < 1 we get γT (a0, ωL) > γ(a0, ωL). Since zT (a0, ωL) > z(aH , ωL), we also get
γT (a0, ωL) > γ(aH , ωL), which implies γT (a0, ωL) > tγ(a0, ωL) + (1 − t)γ(aH , ωL) for
any t ∈ [0, 1]. Furthermore,

γT (a0, ωH) = zT (a0, ωH)µ(ωH)
PT (aH)zT (aH , ωH) + PT (aL)zT (aL, ωH) + PT (a0)zT (a0, ωH)

γ(a0, ωH) = z(a0, ωH)µ(ωH)
P (aH)z(aH , ωH) + P (aL)z(aL, ωH) + P (a0)z(a0, ωH)

γ(aL, ωH) = z(aL, ωH)µ(ωL)
P (aH)z(aH , ωH) + P (aL)z(aL, ωH) + P (a0)z(a0, ωH) .

Since zT (a0, ωH) > z(a0, ωH), zT (aH , ωH) = z(aH , ωL), zT (aL, ωH) = z(aL, ωH) and
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PT (a0) < 1 we get γT (a0, ωH) > γ(a0, ωL). Since zT (a0, ωH) > z(aL, ωH), we also get
γT (a0, ωH) > γ(aL, ωH), which implies γT (a0, ωH) > tγ(a0, ωH) + (1 − t)γ(aL, ωH) for
any t ∈ [0, 1]. Finally,

γT (a0, ω0) = zT (a0, ω0)µ(ω0)
PT (aH)zT (aH , ω0) + PT (aL)zT (aL, ω0) + PT (a0)zT (a0, ω0)

γ(aH , ω0) = z(aH , ω0)µ(ω0)
P (aH)z(aH , ω0) + P (aL)z(aL, ω0) + P (a0)z(a0, ω0)

γ(aL, ω0) = z(aL, ω0)µ(ω0)
P (aH)z(aH , ω0) + P (aL)z(aL, ω0) + P (a0)z(a0, ω0) .

Since zT (a0, ω0) > z(aH , ω0), zT (aH , ω0) < z(aH , ω0), zT (aL, ω0) < z(aL, ω0) and
PT (a0) < 1 we get γT (a0, ω0) > γ(aL, ω0). Since zT (a0, ω0) > z(aH , ω0), we also get
γT (a0, ω0) > γ(aH , ω0), which implies γT (a0, ω0) > tγ(aL, ω0) + (1 − t)γ(aH , ω0) for
any t ∈ [0, 1]. Thus γ0

T ∈ △HL0 and does not lie on either of the boundaries.
To show this strategy can be an equilibrium strategy, we need to check whether

there exists any γ0
T ∈ △HL0 such that it is consistent with the learning strategy of the

agent given in the lemma 1. The following equation denotes the relationship between
any interim belief µ′ ∈ △HL0 and P (a)

γ(a0, ω) = P ′(a, ω)
P ′(a) µ′(ω)

where P ′(a, ω) and P ′(ω) denote the conditional and unconditional probabilities resp.
for belief, µ′ ∈ △HL0 and γ denote the optimal choice of the agent characterized in
lemma 1. Thus P (a) is a continuous function of µ′, let us denote this function as
g1. Also, γ0

T is a continuous function in P (a) for γ0
T ∈ △HL0 since all three actions

are chosen with strictly positive probability. Let us denote this function as g2. The
function g1 ◦ g2 : int(△HL0) → int(△HL0) and is continuous. Note that, we can
use the

∫
(△HL0) because the boundary points of △HL0 are not contained in the

consideration set of HL0 and we have already shown γ0
T does not lie on any boundary

of △HL0. This implies there exists a fixed point of the composite mapping g1 ◦ g2

which would be the equilibrium belief γ0
T .

Using similar arguments we can show that there exists an equilibrium where γH
T ∈

□H, γL
T ∈ □L and γ0

T ∈ □L0. The updated payoff function, in this case, would be,

vT (a0, ω) = PL0(a0)v(a0, ω) + PL0(aL)v(aL, ω)

29



and the necessary and sufficient condition would be,

f(γH
T , aH , a0) = exp −ν − PL0(αL)(αL − βL − ν)

λ
γT (a0, ω0)

+ exp −iν − PL0(αL)(αL − iβL − iν)
λ

γT (a0, ωL) + γT (a0, ωH) ≤ 1.

Similarly one can show there exists an equilibrium where γH
T ∈ □H, γL

T ∈ □L and
γ0

T ∈ □H0. The updated payoff function, in this case, would be,

vT (a0, ω) = PH0(a0)v(a0, ω) + PH0(aH)v(aH , ω)

and the necessary and sufficient condition would be,

f(γH
T , aH , a0) = exp −ν − PH0(αH)(αH − βH − ν)

λ
γT (a0, ω0)

+ exp −iν − PH0(αH)(αH − iβH − iν)
λ

γT (a0, ωL) + γT (a0, ωH) ≤ 1.

Finally, we consider the strategy γH
T ∈ □H, γL

T ∈ □L and γ0
T ∈ □0 the payoff

function becomes,

vT (a0, ω) = v(a0, ω).

By lemma 2, γ0
T /∈ □0, thus such an equilibrium cannot exist.

Hence, proved.

A.5 Proof of Theorem 1
Proof. Lemma 4 has established there are three types of equilibrium when the planner
truthfully communicates the obtained signal. They are as follows

• Strategy HL0: γH
P ∈ □H, γL

P ∈ □L, and γH
P ∈ △HL0

• Strategy L0: γH
P ∈ □H, γL

P ∈ □L, and γH
P ∈ □L0

• Strategy H0: γH
P ∈ □H, γL

P ∈ □L, and γH
P ∈ □H0,

where the subscript P denotes the planner’s choice. Since the least amount of learning
is needed for strategy HL0, this would be the cheapest strategy to implement. Also,
since αH − βH < αL − βL, strategy L0 yields the highest expected gross payoff. In
this strategic communication environment, we want to find a strategy such that the
learning strategy resembles strategy HL0 but the communication strategy improves it
to something akin to strategy L0.
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Consider the following strategy. The planner’s learning strategy is such that γH
P ∈

□H, γL
P ∈ □L, and γH

P ∈ △HL0. However, the planner does not always truthfully
recommend it. The communication strategy is as follows:

• Recommend aH following signal aH

• Recommend aL with probability q following aL

• No recommendation otherwise

The expected payoff of the planner following this strategy would be given by,

vq(aH , ω) = v(aH , ω)

vq(a0, ω) = Pq(aL)v(aL, ω) + Pq(a0)v(a0, ω)

vq(aL, ω) = qv(aL, ω) + (1 − q)Pq(aL)v(aL, ω) + Pq(a0)v(a0, ω)

where Pq(a) denote the unconditional probability of choosing a following no recommen-
dation. Let p denote the posterior probability that the no recommendation message is
derived from the aL signal. Then we can write,

p = (1 − q)PP (aL)
(1 − q)PP (aL) + PP (a0) .

Let µp,∅ ∈ ∆(Ω) denote the interim belief of the agent following no recommendation.
Then,

µp,∅(ω) = pγP (aL, ω) + (1 − p)γP (a0, ω)

The proof comprises the following steps:

• Step 1: verify γH
P ∈ □H, γL

P ∈ □L, and γH
P ∈ △HL0 and µp,∅(ω) ∈ □L0.

• Step 2: the composite function that maps any interim belief following no recom-
mendation into µp,∅(ω) has a fixed point

• Step 3: q is chosen optimally.

As before, the following conditions are necessary and sufficient for γH
P ∈ □H,

f(γH
P , aH , a0) ≤ 1

f(γH
P , aH , aL) ≤ 1
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By rearranging terms we get,

f(γH
P , aH , a0) =

∑
ω∈Ω

zP (aH , ω)
z(aH , ω)

1
zP (a0, ω)γP (a0, ω)

= exp −ν − Pq(aL)(αL − βL − ν))
λ

γP (a0, ω0)

+ exp −iν − Pq(aL)(αL − iβL − iν))
λ

γP (a0, ωL) + exp −Pq(aL)αL

λ
γP (a0, ωH).

For Pq(a0) → 1 we get f(γH
P , aH , a0) < 1 and also at Pq(a0) = 0 the inequality holds

by lemma 3. Thus this inequality always holds. Furthermore,

f(γH
P , aH , aL) =

∑
ω∈Ω

zP (aH , ω)
z(aH , ω)

z(aL, ω)
zP (aL, ω)γP (aL, ω)

= exp (1 − q)(1 − Pq(aL))(αL − βL − ν)
λ

γP (aL, ω0)

+ exp (1 − q)(1 − Pq(aL))(αL − iβL − iν)
λ

γP (aL, ωL)

+ exp (1 − q)(1 − Pq(aL))(αL)
λ

γP (aL, ωH)

Let us note that as q → 1 we have f(γH
P , aH , aL) = 1 and

∂γP (aL, ω0)
∂q

< 0

∂γP (aL, ωL)
∂q

> 0

∂γP (aL, ωH)
∂q

≥ 0.

At q = 0, we have

γP (aL, ω0) > γP (aL, ωL) > γP (aL, ωH)

since zP (aL, ω) = zP (a0, ω) for all ω ∈ Ω in this case but at q = 1

γP (aL, ω0) < γP (aL, ωH) < γP (aL, ωL).

This implies as q decreases from 1, f(γH
P , aH , aL) initially decreases (γP (aL, ω0) domi-

nates and αL−βL−ν < 0), then increases (γP (aL, ωL) dominates and αL−βL−iν > 0).
This implies there exists a q small enough such that f(γL

P , aH , aL) ≤ 1. This generates
a lower bound on q, say, q ≤ q1 ≤ 1 where the inequality holds.
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The necessary and sufficient condition for γL
P ∈ □L would be

f(γL
P , aL, a0) ≤ 1

f(γH
P , aH , aL) ≤ 1

This can be written as,

f(γL
P , aL, a0) =

∑
ω∈Ω

zP (aL, ω)
z(aL, ω)

1
zP (a0, ω)γT (a0, ω)

= exp −((1 − q)(1 − Pq(aL)) + Pq(aL))(αL − βL − ν)
λ

γP (a0, ω0)

+ exp −((1 − q)(1 − Pq(aL)) + Pq(aL))(αL − iβL − iν)
λ

γP (a0, ωL)

+ exp −((1 − q)(1 − Pq(aL)) + Pq(aL))αL

λ
γP (a0, ωH)

Similar to the last inequality at q = 1 we get f(γL
P , aL, a0) < 1 and f ′(γL

P , aL, a0) < 0
in q. This implies for sufficiently large q the inequality holds. This generates a lower
bound, say q ≥ q2 ≥ 0 where the inequality holds. . Similarly,

f(γL
P , aL, aH) =

∑
ω∈Ω

zP (aL, ω)
z(aL, ω)

z(aH , ω)
zP (aH , ω)γP (aH , ω)

= exp −(1 − q)(1 − Pq(aL))(αL − βL − ν)
λ

γP (aH , ω0)

+ exp −(1 − q)(1 − Pq(aL))(αL − iβL − iν)
λ

γP (aH , ωL)

+ exp −(1 − q)(1 − Pq(aL))(αL)
λ

γP (aH , ωH) ≤ 1

for q ≥ q2 this inequality. We can verify that since γP (aL, ω0) decreases and γP (a0, ω0)
increases in q, we get, q2 ≤ q1. Thus there exists q ∈ [q2, q1] such that all the necessary
and sufficient conditions hold.

Finally, for γ0
P we check,

f(γ0
P , a0, aH) =

∑
ω∈Ω

zP (a0, ω) z(aH , ω)
zP (aH , ω)γP (aH , ω) > 1

since f(γ0
P , aH , a0) < 1. By similar logic f(γ0

P , a0, aL) > 1. Additionally,

f(γ0
P , aH , a0) =

∑
ω∈Ω

z(a0, ω)
z(aH , ω)

zP (a0, ω)
zP (aH , ω)γT (aH , ω) > 1
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by lemma 4. By similar logic f(γ0
T , aL, a0) > 1.

f(γ0
P , aH , aL) =

∑
ω∈Ω

z(aH , ω)
zP (aH , ω)

zT (a0, ω)
z(aL, ω) γP (aH , ω) > 1

since f(γH
P , aH , a0) < 1. Also, since zP (a0, ωL) > z(a0, ωL), zP (aH , ωL) < z(aH , ωL),

zP (aL, ωL) < z(aL, ωL) and Pq(a0) < 1 we get γP (a0, ωL) > γ(a0, ωL). Since zP (a0, ωL) >

z(aH , ωL), we also get γP (a0, ωL) > γ(aH , ωL), which implies γP (a0, ωL) > tγ(a0, ωL)+
(1 − t)γ(aH , ωL) for any t ∈ [0, 1].

Furthermore, since zP (a0, ω0) > z(aH , ω0), zP (aH , ω0) < z(aH , ω0) but zP (aL, ω0) ⋚
z(aL, ω0) but the difference in numerator dominates, hence we get γT (a0, ω0) > γ(aL, ω0).
Since zP (a0, ω0) > z(aH , ω0), we also get γT (a0, ω0) > γ(aH , ω0), which implies γT (a0, ω0) >

tγ(aL, ω0) + (1 − t)γ(aH , ω0) for any t ∈ [0, 1].
Finally, since zP (a0, ωH) > z(a0, ωH), zP (aH , ωH) = z(aH , ωL), zT (aL, ωH) <

z(aL, ωH) and PT (a0) < 1 we get γT (a0, ωH) > γ(a0, ωH). But zP (a0, ωH) < z(aL, ωH)
and zP (aL, ωL) < z(aL, ωL), we get γT (a0, ωH) < γ(aL, ωH), which implies for every q

there exists a t′ such that γT (a0, ωH) > tγ(a0, ωH) + (1 − t)γ(aL, ωH) for all t > t′.
Moreover and higher q induces a higher t but a higher q also implies γT (a0, ωH) ≈

γ(a0, ωH). Combine this with the observation that a higher q implies µp,∅ would
more likely be inside △HL0 and the distance between µp,∅ and γ0

P increases with
q. At q = 1 both γ0

P , µp,∅ ∈ △HL0 and at q = 0, γ0
P ∈ △HL0 but µp,∅ ∈ □L0.

This implies there exists q ≥ q3 such that all the conditions hold. Note that, since
γP (aL, ω|γ0 ∈ △HL0) < γP (aL, ω|γ0 ∈ □L0) we also get q3 < q1. Thus there exists
q ∈ [min {q2, q3} , q1] such that γ0

P ∈ △HL0 and µp,∅ ∈ □L0.
Consider the following mapping g1 that maps q ∈ (min {q2, q3} , q1) to an interim

belief µ ∈ int(□L0). This mapping would be continuous in q by Bayes Law. Consider
the mapping g2 that takes interim belief µ ∈ int(□L0) to a unconditional probability
distribution Pp(a). This mapping is continuous in µ by lemma 4. Consider the mapping
g3 that maps P (ap)(a) to a learning strategy γ0

P , which is also continuous in Pp(a)
by lemma 4. Consider a final mapping g4 from γ0

P to q ∈ (min {q2, q3} , q1) such
that µp,∅ ∈ □L0. This mapping will also be continuous in γ0

P by Bayes law. Thus
g1 ◦ g2 ◦ g3 ◦ g4 is continuous and a fixed point exists by Brouwer’s FP theorem. In
the case where (min {q2, q3} , q1) is an empty set, we get q2 = q1. Setting q = q1 = q2

would generate an equilibrium value of q.
To find the equilibrium under this strategy we need to solve for the optimal q. Let

us rewrite the expected payoff of the planner in terms of q as follows:

V (q) = Eµ0(v(a, ω, q)) − K(λ, µ0, q)
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Thus V (q) is twice continuously differentiable and bounded for all q ∈ [min {q2, q3} , q1].
As q increases two opposing effect takes place, namely, the expected payoff from aL

increases, increasing V but the cost of learning for a0 also increases, decreasing V .
Given λ, if either effect dominates for the entire range of q then we obtain a corner
solution, if not there exists an interior q̂ that maximizes V (q).

Hence, proved.

A.6 Proof of Theorem 2
Proof. We will prove the theorem in three steps. First, we will compare the payoff
function of the planner under strategic communication and full compliance. Second, we
will rewrite the relationship between posterior probability and payoff function. Third,
we will consider various possible cases under different parameters and show in which
state the planner is more likely to make mistakes under strategic communication.

Step 1: Let us rewrite the payoff of the planner under strategic communication and
compare it with the full compliance payoff. Under full compliance, the payoff of the
planner is given by the planner’s utility function v(a, ω) since there is no distortion due
to the agent’s action. However, under strategic communication when the planner does
not send any recommendation the agent learns on their own which changes the planner’s
payoff. The following denotes the payoff of the planner under strategic communication,

vS(aH , ω) = v(aH , ω);

vS(aL, ω) = qv(aL, ω); where q = q̂ + (1 − q̂)q′

vS(a0, ω) = q′v(aL, ω)

where q′ denotes the unconditional probability with which the agent chooses aL fol-
lowing no recommendation.

Since, strategic communication does not change the payoff from choosing action aH

in any state, the only two diiferences we will study are ∆0 = v(a0, ω0) − v(aL, ω0) and
∆L = v(aL, ωL) − v(a0, ωL).

Step 2: Let PS(a, ω) and PC(a, ω) denote the conditional probability of choosing
a in state ω under strategic communication and full compliance resp. We can write
them as

PS(ai, ω)
1 − PS(ai, ω) = PS(ai)zS(ai, ω)∑

j ̸=i PS(aj)zS(aj , ω) ; zS(ai, ω) = exp(vS(ai, ω)/λ);

PC(ai, ω)
1 − PC(ai, ω) = PC(ai)zC(ai, ω)∑

j ̸=i PC(aj)zC(aj , ω) ; zC(ai, ω) = exp(v(ai, ω)/λ).

35



Note that,

zS(a0, ω0) < zC(a0, ω0); zS(a0, ωL) > zC(a0, ωL); zS(a0, ωH) > zC(a0, ωH); ∀q′ ∈ (0, 1)

zS(aL, ωL) < zC(aL, ωL); zS(aL, ω0) > zC(aL, ω0); zS(aL, ωH) < zC(aL, ωH); ∀q ∈ (0, 1)

But,

zS(aH , ω) = zC(aH , ω) ∀ω ∈ Ω

Step 3: Let us consider possible values of q̂ and q′ that determine the learning strat-
egy under strategic communication. Let µN denote the intermediate belief following
no recommendation. A higher q′ is generated by higher P (aL|µN ), which can happen
if ∆0 is sufficiently low and ∆L is sufficiently high, i.e., the mistake from choosing a0

in ωL outweighs the mistake of choosing aL in ω0. Also, a higher q̂ reduces P (al|µN ),
since it denotes a lower probability of the optimal action being aL following no recom-
mendation. Combining these two we explore the following possibilities.

Case 1: PS(a0) > PC(a0) and PS(aL) > PC(aL) such that,

PS(a0, ω0)
1 − PS(a0, ω0) >

PC(a0, ω0)
1 − PC(a0, ω0) ; PS(aL, ωL)

1 − PS(aL, ωL) >
PC(aL, ω0)

1 − PC(aL, ω0) .

The first inequality implies zS(a0, ωL) ≫ zC(a0, ωL), and zS(a0, ωH) ≫ zC(a0.ωH).
The second inequality implies zS(aL, ω0) ≫ zC(aL, ω0). These two conditions together
imply high q′ and low q, which cannot be true.

Case 2: PS(a0) < PC(a0) and PS(aL) < PC(aL) such that,

PS(a0, ω0)
1 − PS(a0, ω0) <

PC(a0, ω0)
1 − PC(a0, ω0) ; PS(aL, ωL)

1 − PS(aL, ωL) <
PC(aL, ω0)

1 − PC(aL, ω0) .

This first inequality implies zS(a0, ωL) ≈ zC(a0, ωL) and zS(a0, ωH) ≈ zC(a0, ωH).
The second inequality implies zS(aL, ω0) ≈ zS(aL, ω0). These two conditions together
imply low q′ and high q, which can be achieved with high q̂. In this case, strategic
communication generates more mistakes in learning in both ω0 and ωL.

Case 3: PS(a0) > PC(a0) and PS(aL) ⪌ PC(aL) such that

PS(a0, ω0)
1 − PS(a0, ω0) ≥ PC(a0, ω0)

1 − PC(a0, ω0) ; PS(aL, ωL)
1 − PS(aL, ωL) <

PC(aL, ω0)
1 − PC(aL, ω0) .

This first inequality implies zS(a0, ωL) ≫ zC(a0, ωL), and zS(a0, ωH) ≫ zC(a0.ωH).
The second inequality implies zS(aL, ω0) ≥ zS(aL, ω0).These two conditions together
imply high q′ and intermediate q, which can be achieved by a sufficiently high q̂. This
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implies ∆L ≫ ∆0, i.e., it is more costly to make mistake in ωL than in ω0. In this case
under strategic communication, the planner makes more mistakes in state ωL.

Case 4: PS(a0) ⪌ PC(a0) and PS(aL) > PC(aL) such that

PS(a0, ω0)
1 − PS(a0, ω0) <

PC(a0, ω0)
1 − PC(a0, ω0) ; PS(aL, ωL)

1 − PS(aL, ωL) ≥ PC(aL, ω0)
1 − PC(aL, ω0) .

The first inequality requires zS(a0, ωL) ≥ zC(a0, ωL) and zS(a0, ωH) ≥ zC(a0, ωH). The
second inequality requires zS(aL, ω0) ≫ zC(aL, ω0). These two conditions together
imply intermediate q′ and low q, which can be achieved with low q̂. This implies
∆L ≪ ∆0, i.e., it is more costly to make mistake in ω0 than in ωL. In this case under
strategic communication, the planner makes more mistakes in state ω0.

Hence, proved.
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