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Abstract

Most production technologies require using an optimal combination of multiple inputs. Farm-
ers need to choose the best combination of seeds, fertilizers, pesticides etc. to maximize yield.
They can learn about the production function by observing the conditional productivity of com-
binations of inputs (cell) or by the marginal productivity of each input across cells (average),
where both types of learning are costly. I characterize the optimal learning strategy: observing
an average is optimal for higher uncertainty and observing a cell is optimal for lower uncertainty.
In a sequential learning problem with an optimal stopping time the optimal learning strategy
is to start with observing averages and then switch permanently to observing cells. Depending
on the uncertainty of averages, learning about averages only can be optimal, at the cost of a
higher probability of error (“selective learning”). Selective learning describes the behavior of
Indian cotton farmers when they switched to pest-resistant Bt seeds, as they did not reduce
their pesticide use sufficiently. This informs about optimal extension policies (what type of in-
formation) for various types of production function. I also show that the learning mechanism
in a laboratory setting predicts the behavior of subjects in the lab.
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1 Introduction

Farmers need to choose seed variety, fertilizer, pesticide, level of irrigation etc to maximize yield;
managers of small firms need to decide the assignment of labor between tasks and machines to
minimize the disruption in the production process (Hanna et al. (2014), Bloom et al. (2013) etc).
In general, if the productivity of inputs is correlated then learning about the true production
function becomes very difficult due to a large number of possibilities created by the multiplicity of
inputs.

In response producers often do not try to learn about the overall optimal input mix. One reason
for this is that it is often possible to learn about the marginal(or average) productivity of a single
input( where the average is taken over all possible combination of other inputs). For example,
instead of learning about the resulting yield from each combination of seed variety, fertilizer, pesti-
cide, and irrigation level the farmer can learn about the average productivity of each seed variety,
picking the one which is best on average.

In most standard learning models the decision maker (DM henceforth) can acquire information
about the payoff function prior to the choice of action subject. The learning strategy can involve
sequential sampling, choice of posterior precision, partitioning the observed data into categories
subject to implicit or explicit costs of learning (Hébert and Woodford (2017), Caplin and Dean
(2015), Fryer and Jackson (2008)).

However, learning average productivity of one input (average henceforth) and learning the
productivity of an input combination (cell henceforth) are not necessarily equally or similarly
informative about the payoff function. Hence the learning problem of a producer who has access
to both types of information, both of which is costly, involves a novel trade-off that is not present
in traditional learning problems with only one type of information.

If a farmer learns about the average productivity for each of the input and chooses a combination
of inputs generating the highest average productivity he would not necessarily choose the best
combination of inputs. This is because learning about averages is not necessarily fully informative
about the payoff function. This implies if the farmer relies too much on averages he will have a
higher probability of error. On the other hand, since averages are informative about a subset of
inputs, the farmer does not need to learn about every possible combination and save the cost of
learning.

Selective learning is defined as a learning strategy where the producer only acquires information
by observing averages and never observes any specific input combinations. This definition is similar
to earlier definitions of selective attention in the literature where a producer or DM learn only about
the payoff relevance of a subset of required input Schwartzstein (2014)). Note that selective learning
can lead to a higher probability of error, i.e., lower gross productivity even though it is optimal for
the farmer since the cost of learning goes down.

The research question to be addressed in this paper is as follows: what is the optimal learning
strategy for a producer when he can choose to observe the conditional productivity of each input
combination (namely, what is the best combination of seed and pesticide) along with the marginal
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productivity of each input (namely, what is the best seed variety on average) separately. Given
the optimal strategy, I want to find the condition under which selective learning, i.e, learning only
about averages, even at the cost of a higher probability of error is optimal for the producer.

In this paper, I consider a case study of selective learning farmers. In 2002 a new variety of
seed, Bt cotton, was introduced in India. Bt cotton is a genetically modified seed variety that is
resistant to cotton bollworm, the major pest for cotton. Prior to 2002, pesticide use consisted of
around 40% of the total input cost on average for Indian cotton farmers. Bt cotton was genetically
designed to reduce the cost of pesticide. Bt cotton was also better along with other dimensions,
for example, the average yield with Bt cotton has been higher than the non-Bt hybrids.

After the introduction in 2002, within ten years (2012-13) almost 95% of farmers adopted
Bt cotton variety. Farmers rely on their prior beliefs about optimal pesticide use from the non-Bt
period (2002-03) to decide the optimal level of pesticide even after switching to Bt cotton. However,
I find that the cotton farmers are continuing the high pesticide input, resulting in lower net profit.

For most developing countries, especially India, adoption of technology has remained one of
the major policy challenges (Foster and Rosenzweig (2010)). In the Bt cotton case, however, the
adoption rate of the new technology was significantly high but conditional on adopting the farmers
are not optimally adjusting their pesticide use. The lack of optimal implementation has been a
common feature for many developing economy contexts as well (World Bank Report 2008 refers
this as management gap) but the Bt cotton case is a special example since, instead of underuse
of key inputs farmers are overusing inputs leading to lower profitability. Thus this behavior can
not be explained by financial constraints or other supply-side constraints. Thus the importance of
imperfect learning becomes especially relevant to the Bt cotton case study.

I consider a DM who chooses two inputs, each with finitely many levels (n), to maximize
expected output. Before choosing an optimal condition the DM can learn about the production
by observing a cell (input combinations) or an avearge (marginal productivity of one input). I
consider a sequential learning problem where in each round DM can choose to observe a cell or an
average conditional on prior information. Finally, the DM chooses an optimal stopping time for
the learning strategy and chooses an input combination to get the final payoff.

The optimal learning strategy is characterized by the uncertainty of the belief, where the un-
certainty is measured by Shannon entropy of the belief distribution. I find the optimal choice in
any round of learning is to observe an average for higher uncertainty and a cell for lower uncer-
tainty (whenever learning is optimal). This implies the optimal learning strategy for the sequential
learning problem is to start with observing averages and then make a one-time switch to observing
cells. Also, there exists a combination of prior belief and cost of learning such that only one type
of learning is optimal.

However, this result rests on the assumption that by observing a cell the uncertainty of the belief
over possible payoff functions do not go up. Since I do not restrict the possible prior beliefs the
DM can have, there exists some beliefs where learning about a cell indeed can increase uncertainty.
To deal with this issue for the main result I exclude these types of priors.

3



Moreover, I find that when the DM is choosing to observe a cell, the optimal strategy is to
choose the cell that has highest one-period ahead expected payoff, i.e., the DM does not need to
investigate the entire path of learning following the observation of the cell. Thus when observing
cells the DM mostly exploits his available information. On the other hand, if the DM chooses
to observe an average it is optimal for him to choose the average that reduces the uncertainty of
the belief the most. Hence, while observing averages the DM wants to explore the possible payoff
function.

Note that this finding is different than standard learning by doing or Bandit problems in learning
where the DM also faces a trade-off between exploiting, using the information he has about the
payoff function, and exploring, learning or experimenting to increase the precision of the posterior
belief (Jovanovic and Nyarko (1996), Francetich and Kreps (2016a), Francetich and Kreps (2016b)).
The separability of cells and averages results into this finding.

Also, I find that learning is only optimal if uncertainty is not too high or too low. Too high
uncertainty discourages the DM to start learning at all and for too low uncertainty the learning
cannot significantly affect the final payoff. This result is similar to rational inattention problems
and optimal stopping problems (Drift-diffusion models) in learning (Matějka and McKay (2015),
Fudenberg et al. (2017)).

Given the optimal learning strategy, selective learning is optimal when averages are sufficiently
informative about the productivity of combination of inputs, i.e., observing only averages reduces
the significant level of uncertainty and also cost of learning cell is not too low. For instance, in
the Bt cotton example, on average Bt cotton gives significantly higher yield than non-Bt hybrids,
so, observing only the average yield of the seed varieties reveals more information compared to the
(hypothetical) case where the effect of Bt cotton on yield could only be observed in conjunction
with lower pesticide use. This reduces the incentive of the farmers to observe the payoff from
specific seed, pesticide combination leading to selective learning.

Since the optimal learning strategy requires answering what to learn about, reducing the cost
of one type of learning can distort the incentive to learn and reduce the precision of learning as
well. This generates the policy implication that a demand-driven extension policy where farmers
decide what to learn about and subsequently information is provided at a lower cost by extension
worker may not be able to resolve the problem of selective learning and can possibly make it worse.
However, this implication rests on the assumption that the farmers have more than one possible
learning technology available but does not use the multidimensionality of the payoff function.

Exploiting the multidimensionality, the payoff functions can be categorized into groups where
selective learning would be optimal and/or would reduce the payoff (compared to learning only
about the productivity of input combinations). In summary, a technological change that increases
the average (but not high enough to reach the maximum value for sure) but also changes the
correlation between the two inputs would lead payoff relevant selective learning. The higher average
yield of Bt cotton combined with a change in the level of pesticide use fits the criteria. Whereas,
other technologies, such as drought-resistant rice in India that does not improve yield on average
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but only affects yield for a specific combination of input choices would not display selective learning
behavior.

Finally, since observing the learning behavior of farmers is not possible in the survey data, I
test the learning mechanism in a laboratory setting. The subjects are making a decision in a multi-
dimensional learning setup where they have the option to learn about the average payoff for each
dimension as well. The optimal learning strategy as predicted by the theory would be to observe
averages first followed by cells. Also observing only averages or only cells can be optimal.

I find that almost 85% of the subjects choose one of the three strategies. More specifically,
around 24% of chosen strategies exhibit selective learning, i.e, learning about only the averages.
Also, selective learning leads to significantly lower payoff compared to the average.

I consider several treatments by varying the uncertainty of the prior belief keeping expected
payoff same. However, the proportion of choices satisfying the optimal learning strategy is robust
to the changes in uncertainty in prior. This is also consistent with the theory.

The rest of paper is organized as follows: in the next section (2), I describe the case study of
selective learning by cotton farmers in India. Section 3 describes the learning problem. Section 4
solves optimal learning strategy for the DM and discusses the condition for optimality of selective
learning. Section 5 considers an extension with finitely many levels of output and 6 discusses the
implications for reducing the cost of the two types of learning. Section 7 discusses the laboratory
experiment. Section 8 discusses the two main counterfactual policy implication. Section 9 discusses
the relevant literature and section 10 concludes. All proofs and tables are in the appendix.

2 Case Study: Bt cotton in India

2.1 Data

I use data from AICRP (All India Coordinated Research Project) on Cotton field demonstration
and field experiment. In 2012-13 agriculture year, there are 16 cotton research centers across ten
states conducted field experiment on several varieties of cotton and also held field demonstrations
to provide information to farmers in the region.

I also use NSS 2012-2013 dataset (Round 70, schedule 33) and NSS 2002-03 (Round 59, schedule
33). The schedule 33 is the “Situation Assessment Survey of Agricultural Households” that has
been conducted across India in two rounds for the agricultural year 2012 -13. Round 1 is conducted
in July-December 2012 and round 2 is conducted in January - June 2013. Since cotton is a Kharif
crop, i.e, cultivated during the rainy season, in India I only consider the visit 1 of schedule 33
survey.

Considering only the farmers who produce cotton as only crop or one of the major crops there are
2334 households. For these households information about farm level variables such as expenditures
on different inputs(in Rs), value of output(in Rs), quantity produced(in Kg), cultivated land(in Ha),
household level variables, e.g., total land holding(in Ha), number of members, social group etc and
other production related characteristics e.g., access to various sources of information, knowledge
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about minimum support price, outstanding loans, crop insurance and crop loss etc are considered
for analysis. For a detailed discussion on the control variables, see appendix, table 6.

Also, to construct a measure for prior belief, where prior refers to pre-Bt belief I consider NSS
(round 59, schedule 33). For this dataset as well the farm and household level information has been
provided. Also, other factors such as access to information, crop insurance has been reported for
each household.

Cotton is one of the major cash crops in India, which is also the main raw material for the textile
industry. The following map shows the proportion of cotton in the total agricultural production in
the agriculture year 2012-13.

Figure 1: Share of cotton in total Agricultural Productivity

2.2 Empirical strategy

In 2002, a new type of cotton seed, Bt (Bacilus thuringiensis) cotton was commercially introduced
in the Indian. Bt is a genetically modified pest resistant seed variety that is engineered by placing a
gene from the bacterium Bacilus thuringiensis into the gene of the cotton to make the seed produce
a pesticide that kills the larvae of the major pest of cotton, bollworm. The farmers have rapidly
adopted this new seed variety as shown below in figure .
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Figure 2: Rate of adoption for Bt cotton in India (Source: Choudhary and Gaur, 2014)

For this case study I will make three main observations, first, Bt cotton indeed increased the
average yield of cotton, second, cotton farmers in India overused pesticide leading to a reduction
in net profit in the 2012-13 survey year and third, the net profit after adopting Bt is negatively
affected by prior use of pesticide use through the correlation of prior and current pesticide use.

2.2.1 Yield Difference

For each district growing cotton in 2012-13, I consider the nearest AICCIP center for the measure-
ment of expected yield. Using the 2001-02 and 2002-03 I construct a measure of optimum expected
yield (of seed cotton in Kg/Ha) as follows:

Exp_yield2002,d = (max
j
yield2001,d,j + max

j
yield2002,d,j)/2

where yieldt,d,j denotes the yield of seed type j under the optimal condition (as used by AICRP) in
district d in year t. Thus for each district d the expected yield is the two year average of maximum
yield for any variety of non-Bt cotton. Note that Bt cotton was introduced commercially in 2002
and this expected yield measure thus does not include any Bt hybrids.

For 2012-13 and 2013-14 I similarly construct a measure of expected yield as follows,

Exp_yield2012,d = (max
j
yield2012,d,j + max

j
yield2013,d,j)/2

i.e, the two year average of maximum yield under the optimal condition for Bt varieties only. The
difference between the two averages for each district Exp_yield2012,d − Exp_yield2002,d gives the
measure of yield difference between Bt and non-Bt cotton where both are cultivated under optimal
condition. The map below shows the regional distribution of yield difference. A darker shade of
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green refers to higher yield difference (The details of the yield data is given in the appendix).

Figure 3: Difference in yield (kg/ha) across districts

2.2.2 Overuse of Pesticide

The NSS data contains information about the cost of each input and total value in Rupees, but
does not report amount of inputs used in production. Thus to overuse of pesticide I cannot compare
actual use data with the recommended level of use. Instead I will show the impact of pesticide use
on various outcome variable using the following specification:

Y2012,j = β0 + β1Pesticide2012,j + µD +Xj (1)

where Yj,2012 refers to the outcome variable of interest, namely net profit (defined as total value-
total cost), total value of output, total quantity of output and probability of crop loss. All response
variables are reported per unit of land, measured in Ha. Also µD denotes the district fixed effect
and Xj denote all other control variable for household j (ref table 6 for details). If farmers are
overusing pesticide then we should expected and negative coefficient on pesticide for Y2012,j =
Net_profit2012,j and a zero coefficient for Y2012,j = Crop_loss2012,j , i.e., more pesticide use does
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not change the probability of crop loss but only adds to cost of production.

2.2.3 Panel 1: pre and post cotton farmers

However, since table 7 uses cross-section data for 2012-13, it is possible that the farmers were
using pesticide in anticipation of the risk of pest attack because cotton plants are believed to be
susceptible to various types of pests. To test for that hypothesis we consider cotton farmers from two
periods, before and after the introduction of Bt. I consider a difference-in-difference specification
to consider whether the impact of pesticide over net profit had changed with the use of Bt seeds.

To that extent next I construct a pseudo panel data by combining the data from both NSS 59
and NSS 70 round for cotton farmers. . Using the constructed panel with cotton farmers I consider
the following specification

Net_Profitj = β0 + β1Pesticidej + β2Pesticidej ∗ Post+ µD + µY +Xj + εdjt

where Net_Profitj measures the net profit for household j either 2002 or 2012 survey year. The
post variable is an indicator that the household data is from the 2012-13 agricultural year, i.e, using
Bt cotton. Also, µD and µY represent districts and year fixed effect.

2.2.4 Panel 2: Cotton producing households in Kharif and Rabi seasons

Since the constructed panel does not follow the same households across the two survey periods
if some household level factors have been affecting the impact of pesticide on net profit then the
earlier panel cannot address. To control for household level factors affecting the pesticide use I
consider a panel data of farmers in 2012-13 who produces cotton in the rainy season and some
other crop in the winter season.

In the next panel we consider the same households that produced cotton in 2012-13 agriculture
year and use their pesticide use for other crops during the Rabi (winter) season. The “cotton”
variable is a dummy for cotton produced by the household during rainy season. The difference-in-
difference specification is given as follows:

Net_Profit2012,j = β0 + β1Pesticide2012,j + β2Pesticide2012,j ∗ Cotton2012

+ µD + µH + µSeason +X2012,j + εdjs

where µD, µH and µSeason represents district FE, household FE and season FE respectively.
subsubsectionPanel 3: Household and time fixed effect
Finally we combine the two panel, namely cotton farmers in 2002-03 and 2012-13 and also

the same cotton farmers in both Kharif and Rabi season. In case of a differential trend for some
farm or household level characteristics that affects the pesticide use I consider a tripple difference
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specification as follows:

Net_Profitj = β0 + β1Pesticidej + β2Pesticidej ∗ Post+ β3Pesticidej ∗ Cotton

+ β4Pesticidej ∗ Post ∗ Cotton+Xj + εdjst

where Pesticidej ∗ Post denotes the impact of pesticide on all crops in 2012-13 agricultural year,
Pesticidej ∗ Cotton separates the impact of pesticide by all cotton farmer in both periods and
finally Pesticidej ∗ Post ∗ Cotton separates the impact for Bt cotton in 2012-13.

2.2.5 Role of Prior

Finally, for the third observation, I first construct a measure of prior belief of farmers in 2012-13.
Since NSS schedule 33 is not a panel data, instead of considering the same household for prior belief
an average use of pesticide in the same district as household j is pre-Bt period 2002-03 is used as
a proxy for prior.

Using this definition of prior the impact of prior on pesticide use and net profit is measured
using the following specification:

Net_profitj,2012 = β0 + β1 ∗ Prior + β2yield_diff ∗Xj,d + εj

One possible concern would be whether the districts with high prior use of pesticides have
different suitability for Bt cotton since Bt cotton is a pest-resistant variety. However, in that case,
the apparent dependence of net profit on prior would be due to the unobserved suitability of Bt
cotton in these districts. To control for that in column 4 the yield difference for each district is
added. Since yield difference measures the difference in yield for Bt and non-Bt cotton under the
optimal farming condition and systemic difference related to pest resistance would be controlled
for by this variable.

2.3 Results

Table 7 (in appendix) reports the impact of pesticide on net profit, total quantity, and crop loss.
The variable pesticide measures the cost of pesticide per unit of land (i Ha.). The average level
of pesticide use for the sample is Rs. 5856 with a standard deviation of Rs 9942. Column 1 uses
the net profit per unit of land, column 2 uses the total value of output per unit of land, measured
in Rs/ha and the third column uses the total quantity of output produced measured in Kg/ha.
Finally, column 4 uses the probability of crop loss.

Table 7 shows that for Re. 1 increase in the cost of pesticide the net profit decreased by Rs.
.874 in Ha controlling for Xj and µD. Even though the total value (in Rs/Ha) and total quantity
(in Kg/Ha) increases but the probability of crop loss does not change with pesticide, which is
consistent with the fact that Bt seed is pest resistant.

As shown in table 8 the impact of pesticide use on net profit in 2002-03 is not significantly
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different from zero but for Bt cotton use of pesticide reduces profitability and is similar to table
7. We can see the same pattern when instead of using net profit we use total value of production
(in Rs/ha) or total quantity produced (in kg/ha) (see table 9). This implies that the impact of
pesticide on net profit in post Bt period is not due to some characteristics of cotton farming.

In table 9 the impact of pesticide on the total value of output and the total quantity of output
for the same constructed panel of cotton farmers. Note that pesticide use does not significantly
change the total value or quantity of output.

Table 10 shows the impact of pesticide use on net profit in the houshold panel. As can be seen
from the table pesticide use negative impact net profit only for cotton controlling for the household
level unobseved factors whereas for other crops the impact is siginificantly positive.

As shown in table 11 use of pesticide has a significantly negative impact on net profit but
this effect is due to cotton mostly since the coefficient for pesticide*post*other is statistically
significantly positive. The same result holds true if we consider the total value of output per Ha
instead of net profit.

This suggests that the Bt cotton farmers are most likely using more pesticide than optimal
level and justifies the second claim for the case study. The diagram below shows the relationship
between the pesticide use and net profit earned by the household for 2012-13 cotton farmers from
NSS round 70.

Figure 4: Pesticide use and net profit

Table 12 shows the relationship between prior use pesticide in the same district in 2002-03 and
the post-Bt use of pesticide in 2012-13. The level of pesticide use is highly correlated between the
time periods.
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Table 13 shows the relationship between prior pesticide use and net profit in 2012-13. Further-
more, column 4 of table 13 shows that high prior in a district reduces the net profit in 2012-13 even
though the relation is not significant (p-value .2). If farmers rely on their prior belief, more than
what would be optimal, to decide on current pesticide use then a higher value of expected average
pesticide use would lead to lower profit, due to increase in cost.

In the next section, I build a sequential learning problem for a DM that resembles the choice
of the farmers in Bt cotton context. Our goal is to solve for optimal learning and check whether
the case study satisfies the condition of selective learning as found in theory.

3 Model

3.1 Primitives

Consider a DM with one unit of indivisible land producing output Y with two inputs, S and P .
For simplicity, output Y can take only two possible values. Each of the two inputs has finite n
possible levels, namely S = {s1, s2, . . . sn} and P = {p1, p2, . . . pn}. Let A = S × P denote the set
of possible comination, i.e., the action/decision space.

Let π : A → Y denote the unknown payoff function that maps each combination of inputs to
the corresponding level of Y . For a typical element in A, say (si, pj), let π(si, pj) denote the payoff
from using input combination (si, pj). Note that, the payoff function can be represented in a n×n
matrix where each cell denotes the payoff from a combination of S and P .

As mentioned in the introduction, the DM would also have access to information about the
marginal payoff from each input separately. The marginal distribution of payoff from S is repre-
sented by π(si) and in the payoff matrix, this is shown as the final column. Similarly, the final row
of π(pi)s denotes the marginal distribution of payoff from P .

p1 . . . pn
s1 π(s1, p1) . . . π(s1, pn)
. . . . . . . . . . . .
sn π(sn, p1) . . . π(sn, pn)

(a) Payoff matrix

p1 . . . pn S
s1 π(s1, p1) . . . π(s1, pn) π(s1)
. . . . . . . . . . . . . . .
sn π(sn, p1) . . . π(sn, pn) π(sn)
P π(p1) . . . π(pn)

(b) Payoff matrix with average

For the marginal distribution, let us assume a uniform distribution over the other input. This
implies π(si) denotes the average value of payoff from row i and π(pj) denotes the average value of
payoff from column j.

Let Ω denote the state space, where each state is a realization of the payoff matrix. For an
n× n matrix the state space Ω would thus contain 2n×n states.

The objective of the DM is to make a one-time choice of input combination to maximize his
expected payoff. The DM can possibly choose a mixed strategy over multiple combinations. The
DM can also choose only one input in which the other input is chosen uniformly at random by
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nature.

3.2 Information

3.2.1 Prior

At the beginning of the choice problem the true state is chosen according to the data generating
process µ∗ ∈ ∆(Ω). The DM may or may not know the true DGP. The prior belief of the DM is
given by µ0 where supp(µ∗) ⊂ supp(µ0). This implies even though the DM may not know the true
payoff state he can learn about the true state by acquiring information.

Note that the prior belief is defined over the state space Ω, which is a 2n×n dimensional object.
The prior can also be thought of as a distribution over possible payoff matrices. The two inputs
can be correlated in any possible ways, i.e., no restrictions have been imposed on the prior. Also,
each possible correlation between the two inputs or input combinations can be represented by a
possible prior belief.

Some examples of the prior beliefs include the two inputs being considered substitutes or com-
plements. This can be represented by a prior belief that only puts positive probability on payoff
matrices where only the cells along some diagonal generate Y = 1 and all other cells generate
Y = 0. The following two tables illustrate:

p1 p2 p3
s1 0 1 0 1/3
s2 1 0 0 1/3
s3 0 0 1 1/3

1/3 1/3 1/3

(a) Example: Substitute/Complement I

p1 p2 p3
s1 0 0 1 1/3
s2 0 1 0 1/3
s3 1 0 0 1/3

1/3 1/3 1/3

(b) Example: Substitute/Complement II

Substitutability or complementarity implies for a given level of input S there exists a particular
level of P that maximizes the expected payoff. Since indices are not ranked for the two inputs this
implies Y = 1 is generated along the diagonal of some permutation of the payoff matrix. In the
above two matrices Y = 1 cells are aligned as such.

3.2.2 Learning Tenchnology

The DM faces a sequential learning problem with an optimal stopping time. The DM has two
possible sources of information, namely observing a cell and observing an average in the payoff
matrix. The cost of observing a cell is cl, the cost of observing an average is ca and δ = cl − ca
denotes the difference in the two types of cost. There is no noise in observation, i.e., if the DM
chooses a cell (si, pj) he observes either 0 if π(si, pj) = 0 and 1 if π(si, pj) = 1 . Similarly, if he
chooses average si (or pj) and there are k many cells with payoff Y = 1 in row i (or column j) then
he observes k/n.

Assumption 1. No learning is costless.

13



Since a cell or an average can take finitely many values, observing a cell or an average partitions
the state space, i.e., set of possible payoff matrices into several blocks. For example, if the DM
chooses to observe cell (si, pj) then the resulting partition contains two blocks, B0,(i,j) and B1,(i,j),
where in block B0,(i,j) every payoff matrix has π(si, sj) = 0 and in block B1,(i,j) every payoff matrix
has π(si, sj) = 1.

Thus observing multiple cells and averages can be expressed as a sequence of partitions of the
state space. Let P denote a typical sequence of partitions generated by observing cells and/or
averages in the payoff matrix. Let γ(P) denote a distribution over possible sequence of partitions.
The DM can observe any number of cells or averages and in any possible sequence. So, after
observing a cell or an average the DM can condition his choice of learning in next round based
on the information already revealed. His learning strategy can thus be described by γ(P) as a
conditional sequences of partitions.

3.2.3 Updating Procedure

The DM is Bayesian, i.e., given prior belief µ and observation from a cell or an average the DM
updates the belief over possible states using Bayes law. This implies in round t, i.e., after observing
t cells or averages if the belief of the DM is µt and γ(µt+1) denotes the distribution of possible
beliefs following learning strategy γ(P) then by Bayes consistency,

µt(ω) = E(µt+1(ω)|γt)

Also, since informtion acquisition happens through partitioning the state space, Bayes updating
implies if two states ωk and ωl are in the same block of the partition, i.e., observed cell of average
have the same value in both states, then the following consistency condition holds true,

µt(ωk)
µt(ωl)

= µt+1(ωk)
µt+1(ωl)

where µt and µt+1 denote the tth and t+1th round beliefs respectively. This condition will be called
partition consistency condition.

3.2.4 Uncertainty of Belief

The optimal learning strategy would be characterised by the uncertainty of the belief of the DM.
The uncertainty of belief at any round t is measured using the Shannon entropy of the distribution,
namley,

H(µt) =
∑
ω∈Ω

µt(ω) lnµt(ω)

Since Shannon entropy is separable in possible states, it will respect the properties of parti-
tioning the state space. For example, suppose in round t the DM has belief t and is deciding to
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observe (si, pj). Let B0,(i,j) and B1,(i,j) denote the blocks where π(si, pj) takes the values 0 and 1
respectively. Then the uncertainty of the belief µt can be written as

H(µt) =
∑

ω∈B0,(i.j)

µt(ω) lnµt(ω) +
∑

ω∈B1,(i.j)

µt(ω) lnµt(ω)

Recall that the probability of π(si, pj) being 1 for belief µt was µt,(i,j). Further suppose the observed
value of π(si, pj) is 0, then the uncertainty of the posterior belief µt+1 can be written as

H(µt+1) =
∑
ω∈Ω

µt+1(ω) lnµt+1(ω)

=
∑

ω∈B0,(i,j)

µt(ω)
1− µt,(i,j)

ln µt(ω)
1− µt,(i,j)

= 1
1− µt,(i,j)


∑

ω∈B0,(i.j)

µt(ω) lnµt(ω)

︸ ︷︷ ︸
Residual uncertainty

− (1− µt,(i,j)) ln 1− µt,(i,j)︸ ︷︷ ︸
resolved uncertainty


Note that after observing cell (si, pj) the uncertainty in belief can indeed increase if µt,(i,j) is
sufficiently large and residual uncertainty in B0,(i,j) is sufficiently high. The residual uncertainty
can also be expressed as (1 − µt,(i,j))H(µt+1|B0,(i,j)) where H(µt+1|B0,(i,j)) is the uncertainty of
belief µt+1 if π(si, pj) = 0.

4 Decision Problem

The decision problem of the DM is as follows: the DM enters with prior belief µ0 and first decides
whether to learn or not. He then decides which cell or average to observe. Given the observation,
he updates his belief to µ1 and again decides whether and how to learn. Similarly for every round
t and belief µt the DM decides whether and how to learn. If he chooses to stop learning then he
chooses a mixed strategy over input combinations. The payoff is realized and the DM exits.

Given the learning strategy and updating rules the DM’s value function is given by,

W (µ0) = max
γ(P)

E(π(si, pj)− c(P)|µ0|γ, µ0) (DP)

where the DM chooses a learning strategy γ(P) to maximize the expected payoff from input choices
net of the cost of learning. Note that given the optimal learning strategy the DM would optimally
choose the input combination with highest probability of generating Y = 1, hence the decision
problem is equivalent to solving for the optimal learning strategy.

Instead of solving the t = 0 problem, the DM’s problem can be transformed to a recursive
problem.
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Lemma 1. Given any prior µ0 DM’s problem (DP ) can be written in recursive form as

V (µt) = max
p∈P
−c(p) + EµtV (µt+1)

where P refers to all possible cells and averages inclduing no learning.

The proof is given in the appendix. The main intuition is as follows: in each round, the DM
only finds a subset that contains the true state. Since intersection is commutative, the order of
partitioning does not affect the Bayesian updating process. Thus given a belief µt, since the incurred
cost of learning is a sunk cost, the history of partitions is irrelevant for updating.

The characterization of optimal learning policy can be solved in two parts. First, given a belief
µt the optimal learning choice can be characterized and given the solution of the recursive problem
the optimal learning strategy for t = 0 problem can be derived.

For the recursive problem to obtain the optimal learning choice three questions need to be
answered:

1. When to learn?

2. Whether to observe a cell or an average?

3. Which cell or average to observe?

The recursive problem will be solved backwards. First, we will restrict to the problem where
the DM can only learn about cells. Given the DM decides to learn by cells first I will find the
optimal cell to observe and then check the condition under which learning is optimal. Similarly,
in the case where the DM will be restricted to only learn about averages, I will find the optimal
average to observe and find the condition under which learning is optimal. Finally, I will find the
condition under which observing a cell or average or no learning is optimal when the DM has the
choice of both types of learning.

4.1 Learning by Cells only

Suppose the DM has only access to information from cells. Observing a cell (si, pj) partitions the
state space Ω into two blocks, namely B0,(i,j) where π(si, pj) = 0 and B1,(i,j) where π(si, pj) = 1.
Since the objective of the DM is to maxmize expected payoff, after observing π(si, pj) = 1 no
further learning is optimal.

In the case where π(si, pj) = 0, if the DM chooses to learn he does not necessarily get Y = 0,
since π(si, pj) = 0. This implies he would not choose cell (si, pj) optimally. But there may exist
another cell (sk, pl) such that when π(si, pj) = 0 cell (sk, pl) has a positive probbaility of generating
Y = 1 or πt,(k,l) > 0, where πt,(k,l) denotes the probability of cell (sk, pl) to generate Y = 1.

The following definition formalizes this notion of expected payoff from observing only one cell
and no further. The notation πt+1|(i,j)=0 is used to denote the expected payoff from choosing the
cell with πt+1,(k,l) when π(si, pj) = 0 is observed.
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Definition 1. Suppose cell (i, j) generates Y = 1 with probability πt,(i,j) and in case it generates
Y = 0, without further learning is the expected payoff is πt+1|(i,j)=0 then the one-period expected
payoff from cell i is given by

πt,(i,j) + (1− πt,(i,j))πt+1|(i,j)=0.

As described in the previous section the optimal learning strategy will be characterized by
uncertainty of the belief as measured by Shannon entropy. However, learning is only optimal if
π(si, pj) = 0. The remaining uncertainty in this case is relevant for further gain in learning. The
following definition formalizes the notion of residual uncertainty when π(si, pj) = 0.

Definition 2. If observing cell (i, j) partitions the state space into blocks B1,(i,j) and B0,(i,j), such
that in B1 all states have π(si, pj) = 1 and in B0,(i,j) all states have π(si, pj) = 0, then the
information content in cell (i, j) is given by

Rct,(i,j)(µ) =
∑
ω∈B0,(i,j)

µt(ω) lnµt(ω)
H(µt)

.

Given the definition of a one -period expected payoff and information content the optimal
learning strategy in the recursion problem is given in the following lemma.

Lemma 2. For any belief µt at any round t it is always optimal for the DM

1. To uncover the cell with the highest one-period expected payoff,

2. If more that one cell has the same myopic expected payoff then uncover the cell with lowest
Rc(µ),

3. In case the cells have the same Rc(µ) as well, uncover any such cell at random.

The proof is given in the Appendix. The main intuition is as follows: a higher one-period
expected payoff can happen either due to a higher probability of generating Y = 1 or when cells are
sufficiently negatively correlated, i.e., observing π(si, pj) = 0 gives information about a cell (k, l)
such that πt+1,(k,l) > πt,(i,j). In both cases observing the cell with the highest one-period expected
payoff generates a sequence of cells where a cell with a higher probability of Y = 1 is observed
earlier. This reduces the expected cost of learning and hence is optimal.

Given lemma, 2, the information content of all cells in a payoff matrix can be defined by the
information content of the cell that would be chosen optimally if learning a cell is optimal.

Definition 3. For any round t the informativeness of cells is given by the information content
Rci,j(µt+1) of cell (i, j), where cell (i, j) has the highest myopic expected payoff in round t. This will
be denoted as the information content Rct .

The following lemma characterizes the optimality of learning in terms of uncertainty of belief.

Lemma 3. For any round t, given the expected payoff πt, cost of learning cl and information
content of the optimal cell, learning by cell Rct is optimal only if the uncertainty of the belief µt as
measured by the entropy H(µt) lies within the interval [Hc, H̄c].
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The proof of the lemma is given in the appendix. The main intuition is as follows: higher
uncertainty has two opposing effects on the value of learning. Higher uncertainty implies higher
expected cost since more cells need to be observed. If uncertainty if very low on the other hand
then the gain from learning is small since very little new information can be revealed by learning.
This generates the interval on uncertainty where learning is optimal.

4.2 Learning by Averages only

Let ai,j denote the jth level of input i where i ∈ {S, P} and j ∈ {1, . . . , n}. There are some major
differences between cells and averages. First, averages partitions the state space into potentially
more than two block, at most one n + 1 blocks (0, 1/n, . . . , 1). However, observing only averages
does not always generate Y = 1 for sure.

The following definition formalizes the one-time expected payoff from observing an average ai,j .
Note that the expected payoff when π(ai,j) = k/n is not necessarily k/n but rather bounded below
by k/n for 0 ≤ k ≤ n.

Definition 4. For any belief µt in round t the one-period expected payoff from uncovering any
average ai,j is given by ∑

p

µt,(i,j),pπt+1,(i,j)=p

where µt,(i,j),p denotes the probability of average i generating the fraction p and πt+1,(i,j)=p denotes
the expected payoff from choosing the cells with highest expected payoff upon observing p from average
ai,j.

Similar to the cell problem we also define the information content of the average when no cell
with Y = 1 is obtained by learning, since further learning optimal only in that case.

Definition 5. For any period t let πai,j denote the probability of obtaining a cell with Y = 1 after
observing average ai,j. Then the information content of average ai,j is denoted by the ratio of the
expected uncertainty in µt+1 and uncertainty in period t,

Rat,(i,j) =
∑
ω|Y <1 µt(ω) lnµt(ω)

H(µt)

Note that a higher value of πai,j would reduce the value of Rat,(i,j), i.e, increase the information
content for average ai,j .

The follwing lemma finds the optimal avearge to observe in the recursive problem.

Lemma 4. For any round t and any belief µt the optimal strategy for the DM is

1. Observer average (ai,j) with lowest Rat,(i,j), i.e, highest information content

2. If two averages have same Rat,(i,j) then the average with highest myopic expected payoff

3. If Rat,(i,j) for all average (i, j) then no average would be uncovered
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The proof of the lemma is given in the appendix. The main intuition is as follows: higher
information content either implies a higher probability of obtaining a cell with Y = 1 or the
reduction in uncertainty is higher in case no Y = 1 cell is observed. In both cases, the expected
cost of learning decreases increasing the benefit of learning about ai,j .

Similar to the cells we can define the information content of averages by the optimal average
choice.

Definition 6. Informativeness of average is defined as the value of information content Rat for
average i that has the lowest Rat,(i,j), i.e, the optimal average to uncover in period t.

Also, similar to lemma 3 the following lemma characterizes the optimal learning strategy.

Lemma 5. For any round t given expected payoff πt, cost ca and level of informativeness Ra, the
DM would choose to learn if the uncertainty of the belief, namely H(µt) is within the interval,
[Ha, H̄a].

The proof of the lemma is given in appnedix and the main intuition is same as lemma 3.

4.3 Both types of Learning

Finally, we consider the recursive problem of the DM where he has the choice of observing both
cells and averages. Note that the optimal cell and average to be chosen is given by lemma 2 and 4.

Lemma 6. At any round t given expected payoff πt, information content for cell and average Rc

and Ra and cost difference δ = cl − ca the optimal learning strategy in round t is as follows: for
H l ≤ Hh ≤ H l ≤ Hh

1. If uncertainty is in the interval (H l, Hh) then it is optimal for the DM to uncover an average,

2. If uncertainty is in between (H l, Hh) then DM optimally chooses to uncover a cell in the
matrix

3. No learning everywhere else.

Lemma 6 shows that for a higher level of uncertainty observing average is optimal and for lower
uncertainty observing cell is optimal.

The proof of the lemma is given in the appendix. The main intuition is as follows: a lower level
of uncertainty implies either there are few cells to be observed or cells are more correlated. In both
cases, the gain from learning for a lower uncertainty belief is higher in case of observing a cell than
an average.

4.4 Full Model

Finally, we consider the t = 0 problem of the DM where he chooses a learning strategy to maximize
expected payoff. The optimal strategy is characterized by the uncertainty of the belief. But
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before analyzing the optimal learning strategy we need to consider one type of belief that changes
the relative information content of the cell and average when a cell is observed. The following
definition of crucial cells formalizes this notion.

Definition 7. We would characterize a cell (si, pj) or subset of cells as crucial if one of the
condition is true

• H(µt+1|B0,(i,j)) > H(µt) for some cell (si, pj) in the subset, i.e, in case Y = 0 is observed
uncertainty increases.

• E(Rat+1|B0i,j ) < Rat for some cell (si, pj) in the subset, i.e„ in case Y = 0 the optimal average
has higher information content.

The followig theorem describes the optimal learning strategy of the DM in terms of ucertainty
of the belief. Note that, no restrictions have been imposed on the value of δ, i.e., the cost difference.

Theorem 1. If for a given belief µ if no crucial cells exists then there exists two cutoff values of
δ = cl − ca ≥ 0, namely, ¯delta, δ ≥ 0 given ca such that the optimal learning strategy is as follows:

1. For δ ∈ [δ, δ̄] start by observing averages and then switch to observing cells.

2. If δ < δ then observe only cells.

3. If δ > δ̄ then observe only averages.

The proof of the theorem is given in the appendix. The proof is an application of lemma 6
in the optimal stopping problem instead of the recursive problem. Without any crucial cell being
present the uncertainty reduces as the DM learns more and hence cells become more profitable.
This generates a one-time switch from average to cell and not the other way round.

4.5 Selective Learning

Finally going back to the motivating case study of cotton farmers in India the following corollary
gives the condition under which selective learning is optimal.

Corollary 1. Learning only about averages not cells is optimal if

1. there are no crucial cells

2. Ra is sufficiently low, i.e, averages are sufficiently informative and

3. cl, cost of uncovering cells are sufficiently high

The proof of the corollary is given in the appendix. Note that a higher cost of learning about
cells would trivially make selective learning optimal but a high cl is not necessary to generate
selective learning. If averages are sufficiently informative then the interval in which learning about
average is optimal is larger and also the updating changes the belief significantly. This implies
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observing an average with high information content can reduce uncertainty sufficiently such that
no further learning is optimal.

Selective learning does not necessarily lead to a lower expected payoff. But in case a cell with
Y = 1 is not obtained, the selective learning strategy involves a positive probability of making
an error in choice. The value function of the DM consists of the gross payoff that increases with
learning and cost of learning that also increases with learning but lower the net payoff. Selective
learning makes the DM better off by the lower cost of learning sacrificing gross payoff, however.
This has important policy implications.

4.6 Discussion of assumptions

The main assumption in this model is that when learning about the production function the DM
can either learn about the conditional productivity of an input combination or he can learn about
the marginal productivity of an input separately. Observing marginal productivity may not be
feasible in all possible cases of multidimensional learning, but the Bt cotton case study discussed
here ensures that farmers indeed had access to information about best seed quality per se. However,
the model can be applied to any general learning environment where this assumption holds true.

There is one strict assumption about the production function that has been made to simplify
the analysis. The first one is that there are only two levels of output, 0 and 1. For most agricultural
setting or general production function, this assumption would not hold true. In the next section, I
discuss an extension of the model where output Y can take finitely many possible values. There is
no restriction on how these values are arranged on R but the assumption of finiteness is required.
The main result from lemma 6 that higher uncertainty makes averages more profitable and lower
uncertainty makes cells more profitable goes through.

Another simplifying assumption is that the DM can perfectly observe the payoff from each
cell or average upon paying a fixed cost. In the case study discussed here, this assumption may
not be very restrictive. Farmers do not learn if they don’t avail any sources of information. But
most sources of information give a reliable and true estimate about productivity. However, in most
learning models the DM cannot always obtain a perfect signal about the state. To address this, I
consider another extension (see Appendix) where the DM obtains a noisy signal about the payoff
from a cell or an average and the cost of learning increases with the precision of the signal. The
main result from lemma 6 and theorem 1 still holds true.

5 Extension: Finitely many values of Y

5.1 Primitives

In the baseline model, the output Y can take only two possible values, namely 0 and 1. In this
section this assumption is relaxed. Consider the same primitives and learning as the baseline model
with one modification. The set of possible values of output Y can take n possible values given by
{0, x1, . . . , xm−2, 1}, where m < ∞ where 0 and 1 correspondingly normalize the lower and upper
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bound on the possible values of Y . The intermediate n− 2 values can be distributed any possible
way along the [0, 1] interval and are known to the DM.

Example of possible values of Y are {0, .5, .8, .95, 1}, {0, .25, .5, 0.75, 1}. In the first case the
values of Y are not equidistant, henec for a given set of values of costs of learning cl and ca, the
incentive to learn for different value might not be the same. For example if cl, ca > .05 then the
DM would never to choose to learn about another cell and average when he observes a cell with
π(si, pj) = .95. However, in case of the second example, given the unifrom difference between
possible value of Y the incentive to learn at any level remains the same.

5.2 Properties of Belief

Note that, if xk be the smallest value of Y such that 1−xk < cl and 1−xk < ca then no learning is
optimal after observing any payoff in {xk, xk+1, . . . 1}. This is true for any possible prior belief µ0.
However, for some beliefs if the DM knows the maximum possible value of output is xl < 1 then
no learning becomes optimal for even smaller values of Y . For a given value of µ0 let xk̄ denote the
minimum possible value of Y such that the DM would never learn about any other cell or average
when he observe the payoff xk̄.

The one period expected payoff from observing the cell (si, pj) in round t now becomes

µt,xk̄πt,(i,j) + (1− µt,xk̄)πt+1|(i,j)<xk̄

where µt, xk̄ denote the probability that the cell (si, pj) would generate a payoff higher than xk̄,
πt,(i,j)>xk̄ denote the expected payoff if the cell generate a payoff higher than xk̄ and πt+1|(i,j)<xk̄
denote the expected payoff from choosing the cell with highest expected payoff conditional on
observing π(si, pj) < xk̄. For m = 2 case the highest payoff was 1 the first term in the expression
only involved the probability of observing Y = 1, but with m > 2 this is not the case anymore.

The one period expected payoff from observing the average ai,j where i ∈ {S, P} and j ∈ {1, . . . }
remains as,

∑
p

µt,(i,j),pπt+1,(i,j)=p

where πt+1,(i,j)≥p denote the expected payoff from choosing the cell(s) with highest expected payoff
given the average ai,j generates p. There are two opposing impact on the informativeness of average
as m increases. First, with higher m the possible values of an average ai,j are also greater, thus
averages can be informative about the level of payoff, i.e, possible maximum payoff from learning.
On the other hand the same average value can be generated by mutiple combinations of xk, which
makes the averages less informative.

For the information content, note that, observing a cell now partitions the state space into m
possible blocks. The relevant residual uncertainty involves only the values of xk < xk̄. Let Bk,(i,j)
denote the block that contains all states where π(si, pj) = xk. Then the informativenes of cell
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(si, pj) is given by

Rci,j(µ) =
∑
ω∈∪k<k̄Bk,(i,j) µ(ω) lnµ(ω)

H(µ)

Observing an average also generates more than n + 1 possible partitions. Let M denote the
number of possible of partitions generated by a set of possible values in {0, x1, . . . , xm−2, 1}. The
information content for average ai,j is now given by,

Rat,(i,j) =
∑
ω|Y <xk̄ µt(ω) lnµt(ω)

H(µt)

For this model, first I will consider the recursive model. Note that, since the DM is Bayesian
and with m > 2 the learning strategy is still partitioning the state space into several blocks and
cost of learning is sunk at every round the recursive form of the learning problem exists (simiar
to proof of lemma 1). The following lemma characterizes the learning strategy in the recursive
problem in terms of uncertainty of the belief in round t,

Lemma 7. At any round t given expected payoff πt, information content for cell and average Rc

and Ra and cost difference δ = cl − ca the optimal learning strategy in round t is as follows: for
Hm
l ≤ Hm

h ≤ H
m
l ≤ H

m
h

1. If uncertainty is in the interval (Hm
l , H

m
h ) then it is optimal for the DM to uncover an average,

2. If uncertainty is in between (Hm
l , H

m
h ) then DM optimally chooses to uncover a cell in the

matrix

3. No learning everywhere else.

The proof of the proposition is given in the Appendix. Even though it is similar to the proof of
lemma 6 one concern is due to many possible values of Y , the same expected value or average can
be generated by various combinations of such values, e.g. obtaining 1/2 for sure would have same
expected payoff of obtaining 1 and 0, each half of the times. However, the uncertainty in these two
scenarios would be different and the proof accounts for that.

Given lemma 7 it can be shown that the result of theorem 1 holds true even when m > 2.

Proposition 1. The result of theorem 1 holds true for m > 2.

Proof. Lemma 7 implies that if the DM would continue choosing cell if he starts by observing and
uncertainty decreases and if he starts by observing averages then he can make a one-time switch
to cells as uncertainty goes below the required cutoff.

Given µ0 and the assumption of no crucial cell implies that the relative information content of
cells and averages do not change, i.e, with learning the Rc and Ra can only reduce but averages do
not become more informative compared to cells.
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However, learning also changes πt for every round. If πt increases with learning then cells are
more likely to be correlated and hence the net benefit from a cell is at least as large as that of
averages. If πt decreases with learning then either the cells are more positively correlated or more
likely to generate a lower xk since uncertainty also reduces (no crucial cells). If the DM observes
cell for higher πt then with a decrease in πt and uncertainty of belief µt the cells become more
informative if there is a higher correlation. A lower spread does not affect the informativeness of
the average since multiple combinations of xk can generate the same average value. Thus observing
cells remain optimal. Hence, proved.

6 Comparative Statics

In section 3, it has been shown that the optimal learning policy depends on the cost differential δ
and the prior belief. The averages are more correlated, i.e, more informative about other cells or
averages but may not guarantee a payoff of Y = 1 is observed just by themselves. On the other
hand, the cells are less correlated (mechanically) and hence if the DM chooses only to observe cells
the expected cost would be higher.

In this section, we will consider the impact of changing the cost of observing cell, cl and average,
ca. In most extension program the intervention is to provide information to the farmers. In this
model, this translates to reducing at least one type of cost of learning. However, the optimal policy
characterization in this model would also depend on the relative change in the cost of the two types
of learning instead of a standard reduction in the cost of learning.

Since the benefits of the two types of learning strategies are different, a change in the relative
cost of the two types of learning can have a significant impact on the optimal learning outcome by
affecting the incentive of the DM to learn. The following two corollary investigates this effect and
shows that a disproportionate decrease in one type of cost of learning can indeed lower the level of
learning for the DM.

Corollary 2. For a given value of ca, reducing the cost of learning cells, cl can increase the
probability of error, i.e, probability of choosing an input combination generating Y = 0 and hence
reduce the expected gross payoff.

Corollary 3. For a given value of cl, reducing the cost of learning averages, ca can increase the
probability of error, i.e, probability of choosing an input combination generating Y = 0 and hence
reduce the expected gross payoff.

The proofs are given in the appendix. The main intuition is as follows: reduction in cost can
affect the net payoff in two ways, either the lower cost leads to more learning for the same type
increasing the gross payoff or by reducing the cost of learning due to lower cost. However, the
two types of cost need not be a complement to each other. If both types are costs are sufficiently
and one cost is sufficiently reduced then the DM may want to substitute one type of learning with
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another if it sufficiently reduces the cost. However, this substitution can reduce the gross payoff
since the two types of learning choices are differently informative about the payoff function.

Since any reduction in cost increases the net benefit an optimal strategy needs to ensure that
the precision of posterior, i.e. the gross expected payoff does not reduce for any fixed budget for
cost reduction. To illustrate, if before the cost reduction the DM has been using both types of
information reduction in both costs would preserve the complementarity between the two types of
learning whereas the reduction in only one type of cost disproportionately can make the two types
substitutable.

In the latter case the impact of cost reduction policy works through only the cost of learning
channel and not through the gross payoff. Moreover, the two effects are also going against each
other, reducing the possible impact of the cost reduction policy. However, the former strategy
would affect the net payoff through both the gross payoff and cost of learning channel.

Moreover, the optimal policy would always be dependent on the prior belief, more precisely, on
the relative information content of the averages and cell in all possible rounds.

6.1 Social Learning

In the last section, we showed that lowering one type of cost of learning disproportionately can lead
to higher probability of errors. This effect becomes even more severe when DMs learn socially from
each other. Since the error of one farmer can actually increase the probability of error for other
DMs who learn from him.

Let us consider two groups of DMs in the economy, namely leaders and followers. The group of
leaders does not have access to social learning and can only learn by uncovering cells and averages.
Each member from the group of followers can choose to learn socially from at most one DM from
the group of leaders. Let N be the total number of DM including both groups and Y be the average
payoff for the entire economy1.

Let us further assume that the economy is divided into several neighborhoods where social
learning is only possible within a neighborhood. All DMs in the same neighborhood has the same
prior belief over possible states but not necessarily have the same true state 2. Any leader in a
neighborhood enters the economy at the beginning of t = 0, solves the decision problem and leaves
at the end of t = 0. Any follower in a neighborhood enters the economy at the beginning of t = 1,
has a choice to observe the chosen input combination for at most one leader that he chooses to
observe at no cost, then solves the decision problem and leaves the economy at the end of period
t = 1.

1I have abstracted away from the price of the output in the calculation of payoff, however, an economy-wide
increase in the probability of error would generate general equilibrium effect through price. In this paper, I will
not consider the GE effect and hence I would not be able to do complete welfare analysis and will only focus on
productivity assuming prices as given. This assumption would be justified if the price of the output is determined in
a global market where the economy in question only contributes to a smaller extent.

2This would be true if the payoff functions for all DMs in a neighborhood is generated by the same data generating
process which is known to the DMs
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For a given DM i in period t = 1 and neighborhood n1 let νi,j denote the probability with
which a DM j in the leader group would have same state as i. We assume that νi,j is known for
all leaders form period t = 0 for DM i. Since the objective of the DM i is to maximize expected
payoff subject to cost of learning he would always choose to observe the DM j from t = 0 who has
the highest νi,j over all j.

The leaders do not have any altruistic motives towards the followers and hence for both groups
of DM the objective is to maximize his own expected payoff given his belief and costs of learning.
The cost of learning is the same for all DMs in the same neighborhood. 3.

In this section, I want to explore the effect of changing the cost of learning on Y when social
learning is feasible. Any policy experimentation would decrease the cost of learning for both groups
of DMs. The following proposition shows the impact of such a policy of reducing the cost of one
type of learning over the average yield in the economy.

Proposition 2. If only one of the two costs of learning is reduced significantly then the average
payoff Y can decrease even though the DMs enjoys higher net payoff.

In this model, we have assumed away the mechanism through which the producers learn socially
and divided the producers into groups of leaders or followers. In the literature as well in the case
study there are multiple ways DMs learn socially. For the agriculture sector in developing countries
in many cases, the farmers learn from earlier generation but with a change in technology that is less
likely. For any new technology, it is usually the case that a group of farmers adopts the technology
earlier than others and all other farmers learn from the experience of the early adopters.

7 Experiment

In this section, I want to test the theoretical prediction in a laboratory setting. The goal of this
experiment is to test whether, in a multi-dimensional learning problem where the subjects have the
option of learning about both cells and averages whether they choose the optimal strategy, namely,
they observe the averages first and then make a one-time switch to observing cells before choosing
an action.

Also, the subjects can choose to learn about only averages or only cells. In case the subjects
choose only to learn about averages, i.e, a selective learning strategy I want to test whether the
payoff is indeed lower than the average over all possible strategy. This would show that selective
learning is payoff relevant for subjects, a similar result found in the Bt cotton example discussed
in section 2.

In the experiment, the subjects face a learning problem with two dimensions. The environment
replicates the learning technology described in the section 3. The subjects face a sequential learning
problem over the cells and averages and can choose to stop to go the choice task whenever they

3An alternative assumption would be the DMs have heterogeneous costs of learning but the cost of learning for
the leader is known to the follower

26



want. No learning at every stage is possible. The experiment records the learning choices, action
choices conditional on learning and the payoff for each subject.

Given the laboratory setting the prior is the same as the true data generating process and
known to both the subjects and the experiment. The realization of the true payoff matrix is also
observed by the experimenter, which implies the mistake can be quantified in terms of payoff. The
main treatment considered for the experiment is the different priors. However, none of the priors
contain any crucial condition (a necessary condition for the theoretical result). This implies the
optimal strategy should not be affected by the change in the uncertainty of the prior.

One important feature of the theoretical model is the DM can choose a mixed strategy to
maximize his payoff. To replicate the similar choice set for the subjects they are asked to choose
a combination of more than one time. Since there are in total of nine possible colors and shapes I
allow them to choose nine times in total. It has been communicated to the subjects that they can
choose the exact same combination all nine times. Also, in the introduction with a simple 2 × 2
example, I explain how choosing multiple combinations they can generate a probability distribution
over choices without explicitly stating that this is a mixed strategy.

7.1 Experiment Design

I have used the otree software to design my experiment. Each round of the experiment consists of
two tasks, namely a learning task, followed by a choice task. The subject can play any number of
rounds in 20 minutes. The total payoff is cumulative, i.e, the sum of payoff from all rounds.

7.1.1 Learning Task

For the learning task, the subject is shown a 9 × 9 matrix where each row represents a shape
and each column represent a color. Each cell denotes a shape-color combination and is covered
initially(see Appendix for screenshot). The subjects can open any shape-color combination or any
shape or color separately from the matrix. A color-shape combination would be referred to as a
cell and a single color of shape would be referred as average for the rest of the section.

By opening a cell the subjects can learn whether the payoff from the cell is 1 or 0 and by opening
an average they can learn how many ones are there in the chosen row or column. However, learning
is not free for the subject. After opening a cell or an average the subjects need to solve a problem
to learn about the value in the corresponding cell or average.

If subjects choose to open a cell he observes a numerical problem, e.g.,

Solve: 0.15235034 + 0.24505243− 0.14855077

Additionally, they are also given with a cutoff value, say 0.248096419675. If the solution of the
problem is greater than the cutoff value then the cell gives payoff of 1, i.e, equivalent to $1 and 0
otherwise. Note that, there is no noise in the information provided, i.e if the solution of the cell
problem is above the cutoff the payoff is 1 for sure.
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If subjects choose to observe an average they observe a numerical problem similar to:

The seventh digit represents the number of ones in the row: .2688798354

The subjects can open any number of cells and averages and any number of times. he chooses
to solve the problem he can store his solution and the value becomes available when he makes the
decision for the next round of learning. However, the subject is not given ant feedback on whether
his solution is correct or not. The subject decides when to finish the learning task and move on to
the choice task.

Additionally, at each stage, the subjects can choose to not learn at all. For example, the first
time the subjects see the 9× 9 matrix they have an option to pass to go directly to the choice task.
Also after each observation, they have to choose between continuing to learn and move on to the
choice task.

7.1.2 Choice Task

Once the subjects choose to move to the choice task they need to make nine choices. Each choice
is a shape-color combination. However, there is no restriction on how the subjects can choose this
shape-color combination. For example, he can choose the same combination all nine times, nine
different combinations, three combinations each three times and so on.

The subject can also choose the average row or the average column. However, if he chooses the
average row and the average column together then the resulting payoff is 0 for sure and he is given
a warning.

Given the subject’s shape-color combination choices one shape-color from the list of nine com-
binations is chosen at random with uniform probability. The payoff of the subject is the payoff of
the cell thus chosen. If the subject has chosen an average instead then one of the combinations
from the chosen row or column would be selected at random for the payoff.

Having nine choices serves two purposes for the experiment. First, this gives the subjects an
easy way to randomize over combinations. Nine choices ensure the subject can randomize over the
entire 9× 9 matrix. Second, the mixed strategy also generates the posterior belief of the subject.

7.1.3 Prior

Three possible matrices were chosen for the experiment, as described below. Note that, in each
case, the cells with 1 are chosen randomly using uniform distribution and subjects were informed
about this.

i. exactly 72 cells generating 0 and rest 9 cells generate 1

ii. exactly 54 cells generating 0 and rest 27 cells generate 1

iii. exactly 36 cells generating 0 and rest 45 cells generate 1
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All prior beliefs were generated using these possibilities. The subjects were given the true data
generating processes as their prior and the realized state is known to the experimenter. Combined
with this the fact that the subjects make multiple choices the experiment generates state-dependent
stochastic choice data.

There are three possible priors considered, each with the same expected payoff but varying
degree of uncertainty. Below are the three prior is descending order of uncertainty:

1. All three possibilities have equal probability, namely 1/3 each

2. With 50% chance there are 54 zeros and each of the other two possibilities have 25%

3. With 50% chance there are 72 zeros and with 50% chance there are 36 zeros

7.2 Results

I have run 4 sessions with 35 subjects in the NYU CESS lab with NYU undergraduate students.
On average in 20 minutes each subject played 6 − 7 rounds. Excluding the first round data and
pooling subjects together we have 192 observations, i.e, 192 rounds of the experiment.

In the introduction, before the subjects started the main experiment the possibilities and types
of problems were explained to the subject. To ensure that the subjects understood the task a quiz
consisting of ten questions were administered. The subjects who scored below 4 out of 10 in the
quiz were to be not allowed to participate in the main experiment. All my subjects were able to
finish the quiz to take the main experiment.

Optimal Strategy: There are only three strategies that can be chosen optimally by the subjects,
namely, i. observe only cells, ii. only averages and iii. start with average and switch to cell
permanently.

Violation: A violation of the theoretical prediction happens when the subject chooses to i. ob-
serve cells first and a permanent switch to average, ii. oscillate between observing cells and averages.

The first two graphs below show the percentage of rounds (pooling across subjects) that satisfy
theoretical prediction.

The left panel shows the observed behavior in around 84% of the round did not violate the
theoretical prediction. The right panel shows the same data when broken down into chosen strate-
gies. The first three strategies are optimal and the last two are suboptimal. All differences in the
proportion of rounds with any one type of optimal strategy against any one type of suboptimal
strategy are statistically significant (See appendix table 15a). Note that, significantly more rounds
involve choosing averages then a one-time switch to cell compared to the two suboptimal strategies.

Also, in around 24% rounds the subjects uses a strategy is to observe only averages. This is the
selective learning strategy described in the model. The average payoff from this strategy is given
by 0.4265. In comparison, the expected payoff from all strategies combined is 0.6094 for a round
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(a) Percentage of rounds with no violation (b) Chosen learning strtegies in percentage

in the data, which is statistically significantly higher. Thus selective learning is payoff relevant to
the subjects. The same result holds true if broken down across different prior beliefs.

Figure 11 shows the pattern of optimal strategy choice when broken down by prior. Across
all priors, the proportion of rounds that satisfy the theoretical prediction is above 80%. However,
between prior, there is not much of a variation even though with more uncertainty the subjects are
more likely to choose an optimal strategy.

Figure 10 further breaks down the figure 11 into all possible strategy choices for all priors.
There are significantly more rounds where subjects choose one of the optimal strategies compared
to any suboptimal strategies (the detailed t-stats are given in the appendix).

Thus I show that the theoretical prediction of optimal learning mechanism is validated in the
experiment. A significant proportion of choices exhibit selective learning and is indeed payoff
relevant.

8 Policy Implication

The objective of this paper is to understand an imperfect learning behavior of cotton farmers in
India. The model and the following analysis if optimal strategy helps us to understand the learning
mechanism that can lead to the observed type of imperfect learning behavior. However, the analysis
would remain incomplete without discussing the policy implications in such a learning environment.

In this section, I will consider two specific policy implications of the model. The first one is
true for any costly learning problem where the DM needs to choose what to learn about before
deciding how much to learn about. Since in this model the DM has a choice between marginal and
conditional productivity to learn about, the question of what to learn about becomes relevant.

The other policy is specific to the multidimensional structure of the model. Given assumptions
about the payoff functions (namely there are finitely many levels of inputs), I can characterize the
type of payoff function that would lead to selective learning with a lower level of precision. If we
consider the policymaker has a choice between providing different types of information, namely,
conditional or marginal productivity and providing two types of policies has different costs attach
to it then characterizing these payoff functions is informative about the extension policy. The
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extension program can target the type of technological change where providing only marginal
information does not benefit the farmers and only conditional information would increase payoff
for all types of farmers or the type of technology for which providing any type of information is
equally effective and so on.

8.1 Policy 1: Demand-driven Extension

After the success of the green revolution as the gains from extension programs started to wane
a demand-driven approach to extension program replaced the existing training-and-visit (T&V)
approach to extension program. After the pilot study between 1995 and 2003 across 28 districts in
India, the new approach to extension services in the form of a central project ATMA (Agricultural
Technology Management Agency) has been introduced in 2005. The major change in the approach
of this new extension program is that, instead of training the farmers what is the best way of
producing a crop the new program allowed the input of the farmers on what information to be
provided to them.

Even after more than 10 years of implementation, the impact of ATMA has been a mixed
experience (see Glendenning and Babu 2011 for a survey of the performance of ATMA after 5 years
of implementation). Even though it may be true that a demand-driven approach that takes input
from farmers would be more approachable for the farmers and would increase the success rate of
extension through a higher rate of penetration but depending on how farmers learn there can be
severe drawbacks of this type of policy.

In the context of this model a demand-driven extension policy like ATMA can reduce the cost
of learning for either or both marginal and conditional productivity depending on the learning con-
straints the farmers have been facing. For example, if the extension service enables the farmer to
ask questions about specific topics and learn from a server or an agriculture expert using telecom-
munication technology (like mobile phone connections) then depending on the kind of questions
the farmer can ask would determine the type of information becomes cheaper for the farmers. This
leads to the following result that uses the observations from the comparative statics result.

Result 1. An introduction to demand-driven extension policies can reduce the rate of learning for
farmers when the cost of learning prior to the intervention was sufficiently high.

This result follows from corollary 2 and 3 jointly. If initially, the cost of learning is too high
such that the DM chooses both types of learning because learning about one type of information
was not sufficiently informative given the cost and after the reduction of cost the farmer switches to
only marginal or conditional learning then a reduction in cost can lead to a lower level of learning.
The mechanism is as follows: a lower cost of learning for any type of learning would imply the DM
would want to learn more by using that type of information. If the obtained information from one
source is sufficient then the DM would not use other types of learning. This would lead to lower
cost of learning but also lower gross payoff since the level of learning goes down.
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8.2 Policy 2: Categorization of Technology

To categorize the type of technology that would be more suitable for selective learning and/or lead
to lower precision of learning let us start by considering a 3× 3 model of payoff function, i.e, there
are 3 levels of S and P and the output Y takes two possible values 0 and 1.

First, we will categorize the production technology based on the expected payoff given prior
belief µ0. For simplicity, we can do so by considering the possible number of 0s present in the payoff
matrix. Given a level of expected payoff, we can further classify the production functions by the
correlation between two inputs as well, which will determine the impact of selective learning. For
illustration purpose suppose the cost of learning about a cell cl < 0.33, i.e, if the DM knows that
there are exactly 2 out 3 cells in a row or column in a payoff matrix then under a uniform belief (no
further information about the payoff matrix) it is profitable for the DM to learn about one more
cell.

Good States : In a 3×3 payoff matrix if there exists at least one row or column that constitutes
of only Y = 1 then the payoff function would belong to the set of good states. This can happen if
either there are at least 7 cells with Y = 1 or there are exactly 6 cells with Y = 1 but not all rows
or column give the same expected payoff. For these production function, the DM can perfectly
learn about a choice of a cell with Y = 1 just by observing averages, expected payoff loss due to
selective learning is determined by the minimum of the two types of costs.

Bad States : In a 3× 3 payoff matrix if there exists at least one row or column that constitutes
of only Y = 0 then the payoff function would belong to the set of bad states. This can happen if
there are at most 2 cell with Y = 1 or 3 cells with Y = 1 but not all cells or columns gave the same
payoff. In this case, however, observing only averages is not perfectly informative about a cell with
Y = 1 but given cl < .33 the expected loss is bounded by the lowest of the two types of costs.

Medium states with change in correlation : Thus selective learning would only be payoff
relevant, i.e, the loss would not be bounded by the lowest of the two costs (the DM can learn better
by observing only cells) if the payoff function is neither good or bad state, which will be denoted
as medium state. However, not every type of payoff function would lead to payoff relevant selective
learning. The following matrix illustrates,

p1 p2 p3 S
s1 0 0 1 1/3
s2 0 0 1 1/3
s3 1 1 0 2/3
P 1/3 1/3 2/3

Table 3: Selective learning I: true payoff function

In this example the payoff loss due to selective learning is not bounded by the lowest of the two
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costs. Even if cost of observing averages goes to zero, ca = 0 and the DM observes all the averages
he cannot perfectly learn about the true production function. For uniform prior belief over all cell
upon observing the posterior belief of obtaining Y = 1 for each cell would be as follows: If cl > 0.2

p1 p2 p3 S
s1 0.2 0.2 0.6 1/3
s2 0.2 0.2 0.6 1/3
s3 0.6 0.6 0.8 2/3
P 1/3 1/3 2/3

Table 4: Selective learning II: posterior belief

no further learning is optimal here, the DM would choose (s3, p3) resulting in Y = 0 payoff. In this
case the expected loss due to selective learning is not bounded by the lowest of the two costs.

There are two main features of the production function in the earlier example, one, there exists
one row and one column that generates strictly higher expected payoff compared to other levels
of the same input and two, the correlation between the two input changes for the highest average
payoff level of inputs. This feature can be generalized as well using corollary 1. The row or the
column with strictly higher average payoff ensures that sufficient uncertainty is reduced but two
facts, namely, not observing Y = 1 for sure and correlation can change for the possible states
belonging to the same block that is generated by observing the averages ensure that the residual
uncertainty is not zero, i.e., selective learning is payoff optimal. If the correlation between the two
inputs were to remain constant then no residual uncertainty is left which is equivalent to knowing
a cell with Y = 1.

For more than two levels of values of Y , a similar result can be obtained as shown in the example
below. Suppose Y can take four possible values Y ∈ {0, 0.25, 0.5, 0.75, 1} . Suppose pesticide can
take five possible values {0, 1, 2, 3, 4} corresponding to very low, low, medium, high and very high
levels of use. I will compare the expected payoff from using the best variety of existing seed, say
Non_bt seed to a new seed variety, namely Bt seeds.

Panel 6a, the payoff for the example is plotted. The average payoff from Non_bt is .5 and the
average payoff from Bt is .65, thus learning about only average would make Bt a better choice.
Without learning about seeds the best average level of pesticide is 2, since it gives the highest
average payoff .75. But the combination of Bt seed with pesticide level 2 generates Y = 0.5 which
is half the maximum possible value of Y that can be obtained. The other important feature of the
example is that the correlation between the two inputs change for the new seed technology, namely
Bt. Thus selective learning in this case would be optimal but payoff relevant at the same time.

Panel 6b, I have plotted the net profit and pesticide use for the two rounds 2002 and 2012 of
data for cotton farmers. Note that, 2012 is a proxy for Bt cotton use and 2002 is a proxy for Non-Bt
use. Note that, the pattern in the data is same as the pattern in the example, i.e, Bt generates
higher average payoff but the optimal level of pesticide conditional on Bt shifts to the left.

In comparison, if the technology is such that the average level remains the same but the gain
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(a) Numeraical Example: change in correlation (b) Data on Bt cotton: Net profit & pesticide use

is by changing the input combinations then selective learning would not be optimal, since learning
about averages would not be sufficiently informative. Such an example is Sahbhagi Dhan rice
variety in India. It is a drought-tolerant rice variety that only generates higher payoff for a dryer
and hotter condition. Thus the yield is lower in a normal year the yield is lower (see Anantha
et al 2015) but higher in the drought year. This model predicts selective learning cannot be an
optimal strategy for this technology since the payoff gain can only be achieved by learning about
the interaction between the seed and level of irrigation.

9 Literature

Since low productivity in agriculture is a major concern in most developing countries understanding
the reason for the sub-optimal use of inputs and/or technology has been an important research
question in development economics. The main reasons for the sub-optimal use of inputs as discussed
in the literature are: financial constraints4, supply-side constraints and learning constraints(Duflo
et al. (2008),Duflo et al. (2011), RIRDC report 2003). See De Janvry et al. (2017) for a survey of
field experiment targeted to affect the sub-optimal choice of farmers in developing countries.

Constraints to learning can take many forms starting from lack of information or costly ex-
perimentation/processing or cognitive limitation faced by the farmers. If the information is costly
to acquire or requires some costly experimentation the farmers may optimally choose not to learn
about the optimal practices. One of the major focus of agricultural extension services thus have
been to successfully transmit information to the farmers (Kondylis et al. (2017), Meijer et al. (2015)
and Glendenning et al. (2010) for Indian context).

To mitigate learning constraints farmers often learn from the experience of their neighbors.
Social learning can change adoption/optimal choice behavior for new farmer based on the outcome
of the more experienced farmers 5. However, social learning mechanisms are often not effective in
the case of agriculture due to the idiosyncratic nature of the agricultural production function.

4Lambrecht et al. (2014), Karlan et al. (2014)
5 Conley and Udry (2001), Beaman et al. (2014a), Cai et al. (2015)
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Constraint to learning can be a result of the cognitive limitation of the farmers. As discussed
in Mullainathan and Shafir (2013) the poorer farmers face a stricter cognitive constraint as a result
of poverty. Also especially in India where the average rate of literacy is around 80% a significant
proportion of farmers do not have the necessary education to systematically learn via experiments
or from other formal resources (govt websites, newspaper etc.).

In terms of research question, this paper is closest to Schwartzstein (2014) where the author
introduces the concept of selective attention, i.e., paying attention to only input in a production
process. The first major difference is that in Schwarzstein 2014 the objective of the DM is to
correctly predict the state rather than maximizing the expected payoff. The second major difference
is that the DM in Schwarzstein 2014 does not choose whether to learn about both inputs or not since
the cognitive constraint he faces is exogenously given. This leads to different policy implications.
For example, reducing the cost of learning in Schwarzstein 2014 can never increase the probability
of mistake.

The main mechanism of the decision problem in this paper is in the strand of recent attention
literature. In the Rational Inattention literature the DM faces a decision problem where he has
the choice of learning which is costly. The cost of learning/attention is treated as a cognitive cost
that affects the net utility of the DM. Several types of deviations of behavior from rationality have
been explained as a result of the cognitive cost restricting the possible choices of the DM, which is
precisely the same approach I follow in this paper. See Sims (2003), Matějka and McKay (2015),
Caplin and Dean (2015), Caplin et al. (2017),Woodford (2014), Hébert and Woodford (2017),
Steiner et al. (2017), Matějka and Tabellini (2017), Gabaix (2014).

Apart from Matějka and Tabellini (2017) no other paper consider the multidimensional nature
of the decision problem which is the key focus of this paper. In Matejka and Tabellini 2015 even
though there are multiple dimensions, they are additively combined to derive the final payoff. We
do not require any such structure of payoff function.

Also, even though the DM in this model faces a one-time decision problem the recursive ap-
proach of the problem is similar to Woodford (2014) and Hébert and Woodford (2017). However,
I emphasize the decision what or how to learn also along with when to stop learning.

Besides the rational inattention literature that mainly focuses on deviations of behavior from a
rational standard other literature on financial decision making has discussed the role multiple di-
mensions of a decision-making problem. See Van Nieuwerburgh and Veldkamp (2009), Van Nieuwer-
burgh and Veldkamp (2010), Mondria (2010), Peng and Xiong (2006) for the portfolio choice prob-
lem where the DM also needs to learn about the payoff from several assets. Every model in this
literature assumes some specific form of relationship between the assets (in terms of correlation)
and special cost functions for learning. No such assumption on prior is made in this paper.

The feature of the trade-off between cell and average learning strategy in this model is however
similar to coarse categorization models of prediction (See Fryer and Jackson (2008), Mullainathan
et al. (2008), Mohlin (2014) etc ). In this models, the DM wants to predict an outcome variable
based on a set of input variables. The DM partitions the set of possible input variables and predicts
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the outcome variable for the entire block in the partition.
There are two major differences between the coarse categorization/partition models and our

model. First, Instead of choosing a finer or coarser partition as in the coarse categorization models,
the DM in this paper is choosing between two types of partition, one based on unconditional
learning and the other on conditional learning which generates the depth-breadth trade-off.

Second, in all these categorization models the objective of the DM is to predict the outcome but
in our model, the DM wants to maximize the payoff and learning about the relationship between
input and output variable is instrumental in maximizing payoff. As noted by Van Nieuwerburgh
and Veldkamp (2010) in an otherwise similar environment the learning strategy would be very
different if the DM is maximizing payoffs instead of predicting only.

Some recent papers have explored the implications of multi-dimensional learning in a variety
of context. In Richter (2017) the DM wants to choose an object out of n options and each object
has n characteristics. The objective of the DM is to choose the object with the highest sum of
attribute values. They find that DM would do a breadth search, learn about one characteristic for
multiple objects when n is small and the DM would do a depth search, learn about one object but
all characteristics when n is large. The major difference in my paper is that the DM maximizes
the payoff from one combination and not the sum across a row, this reduces the incentive to learn
overall but increases the payoff from learning about average (equivalent to single characteristics
breadth search).

Liang et al. (2017) considers a model of dynamic information acquisition from many correlated
information sources. They find for general information structure after a finite period the optimal
strategy is myopic, i.e, to choose the signal that maximally reduces uncertainty. In this paper I get a
similar result regarding reducing maximum uncertainty being a component of optimal strategy but
the signal structure here is significantly different since the correlation in signals, i.e, observations of
cells and averages is implicit in the prior, which makes it easier for the DM to consider the benefit
from using the correlation. In fact, the equivalent myopic strategy in my model would incorporate
the correlation between observation from averages and cells.

Leme and Schneider (2018) studies a problem of contextual search, which is a multidimensional
search problem in contextual decision-making. The objective of the DM is to find the location of a
point in a n dimensional object by partitioning the object into two blocks. They find an algorithm
that divides the object in either half lengthwise (in n-dimension) or divides the object in half
measured by an intrinsic volume (in n−1 dimension, e.g. half area wise for a regular 2−D object)
significantly improves the speed of convergence over the algorithm that only considers partitioning in
n dimensional space. The role of average in this model is similar to a lower dimensional partitioning
in the current model. However, since the DM in my model needs to find only one combination and
there can be more than one optimal combination, the incentive to learn is lower in my model.
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10 Conclusion

In this paper, I have built a model of multi-dimensional learning in a production environment where
the payoff-maximizing producer has an additional access to information about the marginal produc-
tivity of each input besides the information about the productivity of each input combination. In
a sequential learning problem with optimal stopping choice when both types of learning are costly
the optimal policy is to start by learning about averages then permanently switch to learning about
cells as the uncertainty of the belief over production function, as measured by Shannon entropy,
goes below a threshold.

The optimal cell to observe is the one that maximizes the payoff from one-period learning
only and the optimal average to observe is the one that reduces the uncertainty of belief the
most. Moreover, observing only cell or only average can also be optimal for some prior and cost
difference. More specifically if information content on average is significantly high then observing
only averages, i.e, selectively learning about an input becomes optimal. However, selective learning
can significantly reduce the payoff of the DM even though the net benefit increases due to lower
cost.

In a case study with cotton farmers in India, I show evidence of selective learning and justify this
behavior in light of the model. This has significant policy implications for agricultural extension
programs in India. According to the model reducing one type of cost, disproportionately can lead
to a lower level of learning even when the DM is better off in terms of net payoff. If learning has
positive externality then the optimal policy needs to involve reducing the cost of both types of
learning so that the incentives to learn is not distorted.

Finally, I test the mechanism of learning in a laboratory setting where the subjects face a
multidimensional, 9 × 9 payoff matrix choice with the additional choice of learning about the
average payoff from each row and column. I find that in almost 85% of rounds the subjects’ behavior
satisfy the theoretical prediction. Moreover, they choose all three types of optimal learning strategy.
Selective learning happens for a significant fraction of rounds and is payoff relevant, i.e., the average
payoff from selective learning rounds and significantly lower compared to the average payoff across
all strategies.
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A Appendix: Data

The major producers of cotton are ten Indian states divided into three regions, Northern, Central,
and Southern. The Northern region consists of the states of Punjab, Haryana, and Rajasthan,
Central region of Gujarat, Madhya Pradesh and Maharastra and Southern region of Karnataka,
Telengana, Andhra Pradesh and Tamil Nadu. The three regions differ significantly in terms of
irrigation, type of cotton produced and the length of the crop cycle (See table 5).

Particulars Northern Central Southern
States Punjab, Haryana,

Rajasthan
Gujarat, Madhya
Pradesh, Maha-
rashtra

Karnataka, Te-
lengana, Andhra
Pradesh, Tamil
Nadu

Irrigation Mostly Irrigated Irrigated and Rain-
fed

Irrigated and Rain-
fed

Planting
Season

April-May June-July July-August

Harvesting
Season

October-November November- April December- March

Variety Medium and Short
Staple

Medium and Long
Staple

Long and Extra-
Long Staple

Table 5: Regional Variation in Cotton Production in India

NSS schedule 33 does not report the actual learning content of the farmer but records various
information sources. Part C of Table 6 shows the average learning of the farmer. Note that
all sources of information does not necessarily give a similar type of information. For example,
government extension services provide information about specific input combination to maximize
the total payoff whereas input dealers or media often provide information about one input (marginal
distribution) separately.
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Variable Description Unit Summary statistics
A. Input

Seed Cost of seed per ha Rs mean = 4584.465, sd = 6281.258
Irrigation Cost of irrigation per ha Rs mean = 478.7396, sd = 2001.767
Fertiliser Cost of chemical fertiliser per

ha
Rs mean = 11269.87, sd = 15881.04

Manure Cost of manure per ha Rs mean = 1140.944, sd = 5098.996
Human La-
bor

Cost of human labor per ha Rs mean = 8905.387, sd = 15277.95

Diesel Cost of Diesel per ha Rs mean = 1844.602, sd = 9018.905
Interest Interest paid per ha Rs mean = 873.1177, sd = 5256.366
Depriciation depriciation per ha Rs mean = 977.8085, sd = 4888.691
Other Cost other costs per ha Rs mean = 1352.574, sd = 4051.152
Area irri-
gated

Percentage of irrigated area % mean = 0.4034814, sd = 0.488216

Land Total cultivated land (in logs) Ha. mean = 1.322927, sd = 1.367415
B. Household

Land Posses-
sion

Total land possession (own or
rented)

Ha. mean = 2.657479 , sd = 2.614432

Ration Card 1 = Antodaya (poorest) 2=
BPL(below poverty line), 9 =
other

% 1: 3.1%, 2: 40.5%, 9: 48.6%

MSP Aware of Minimum Support
Price

% aware : 21.7%

Insurance 1: insured only with loan, 2:
insured, 3: not insured

% 1: 10%, 2: 1.6%, 3: 88.4%

Household
size

in logs N/A mean = 5.16, sd = 2.33

Age Age of the HH Head(in logs) Years mean = 49.75, sd = 13.03
Social Group 1=ST, 2 = SC, 3 = OBC, 9 =

other
% 1: 14.38%, 2: 8.94%, 3: 44.23%, 9:

32.45%
C. Information

Extension
Agents

Accessed information at least
once

% 8.2%

Private same % 13.3%
Other pro-
gressive
farmers

same % 30.8%

Media same % 28%

Table 6: Control Variable
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Dependent variable:
Net Profit Total Value Total Quantity Crop Loss (=1)

(1) (2) (3) (4)

Pesticide −0.874∗∗∗ 0.013∗∗ 0.345∗ −0.0000008
(0.195) (0.005) (0.185) (0.000006)

Observations 2,144 2,141 2,144 2,144
Mean 7282 54311 1383
Sd 69465 64301 1687
Adjusted R2 0.413 0.331 0.384 .360

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Respondents from 2012-13 agriculture year who produced cotton as the only crop or
major crop during the Kharif season. All input variables are measured in Rupees.
Net profit is defined as Total Value (in Rs) minus total cost of all inputs(in Rs). Total
quantity is measured in Kg. 113 districts from 10 states are considered and district
FE added. All other input variables, table 6 part A, all household variables from part
B and information variables in part C are controlled for.

Table 7: Effect of pesticide

Dependent variable:
Net Payoff = Total Value - Total Cost

(1) (2) (3) (4)

Pesticide −0.038 −0.085 −0.091 −0.414
(0.381) (0.409) (0.410) (0.465)

Pesticide* post −1.315∗∗∗ −1.231∗∗∗ −1.216∗∗∗ −0.843∗
(0.391) (0.419) (0.420) (0.478)

Household X X X

Information X X

Post*X X

Observations 4,005 3,886 3,881 3,881
R2 0.373 0.371 0.372 0.379
Adjusted R2 0.347 0.343 0.343 0.348

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Respondents who produced cotton in relevant agriculture year from both 2002-03
and 2012-13 survey years are considered. All input variables fromtable 6 part A are
controlled for all columns.Fourth column also includes the interaction term for each
control variable. District FE and Year FE is included in all columns.

Table 8: Panel 1: net payoff
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Dependent variable:
Total Value of Output Total Quantity of Output
(1) (2) (3) (4)

Pesticide 0.364 0.066 0.062∗∗∗ 0.031∗
(0.384) (0.436) (0.016) (0.018)

Pesticide* post −0.218 0.114 −0.052∗∗∗ −0.019
(0.393) (0.448) (0.016) (0.018)

Post*X X X

Observations 3,881 3,881 3,878 3,878
R2 0.455 0.458 0.225 0.235
Adjusted R2 0.430 0.431 0.190 0.197

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Respondents who produced cotton in relevant agriculture year from both 2002-03
and 2012-13 survey years are considered. All input variables from table 6 part A are
controlled for all columns. District and Year fixed effects are included in all columns.
Fourth column also includes the interaction term for each explanantory variable.

Table 9: Panel 1: Impact of pesticide on total value and total quantity of output

Dependent variable:
Net profit Total Value

(1) (2) (3) (4)

Pesticide 6.398∗∗∗ 3.469∗∗∗ 7.301∗∗∗ 3.960∗∗∗
(0.633) (0.724) (0.605) (0.715)

Pesticide*Cotton −7.421∗∗∗ −4.478∗∗∗ −7.136∗∗∗ −3.744∗∗∗
(0.612) (0.724) (0.585) (0.717)

Cotton* X X X

Observations 3,405 3,405 3,405 3,405
R2 0.782 0.816 0.797 0.832
Adjusted R2 0.403 0.493 0.445 0.536

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Households that produce cotton in Kharif season of 2012-13 are considered. Other crop refers to
all other crops produced by same households in Rabi season of 2012-13. All four column include
all control variables from table 6. Column (2) and (4) also include all interaction terms for all
explanatory variables. District FE, Season FE and Household FE are included.

Table 10: Panel 2: Net profit and Total Value
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Dependent variable:
Net profit

(1) (2) (3) (4)

Pesticide*post*Cotton −3.357∗∗∗ −3.352∗∗∗ −3.345∗∗∗ −3.303∗∗∗
(0.679) (0.679) (0.679) (0.882)

Household X X X

Information X X

Interaction X

Observations 6,960 6,960 6,960 6,960
R2 0.280 0.280 0.282 0.335
Adjusted R2 0.263 0.263 0.264 0.315

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cotton farmers from both 2002-03 and 2012-13 survey years are incldued. Other crop refres
to all other crops produced by the same households in same agriculture year but during Rabi
season. All othet inputs,. District FE, Year FE and Season FE added. Column 4 includes
the interaction term for all explanatory variables. Interaction includes for all control variable
from table 6 interaction with post, cotton and post × cotton separately.

Table 11: Full Panel: Net profit

Pesticide
(1) (2) (3)

Prior 0.537∗∗∗ 0.537∗∗∗ 0.530∗∗∗
(0.112) (0.113) (0.116)

Household X X
Information X

Observations 2,148 2,148 2,140
Adjusted R2 0.544 0.549 0.552

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Prior refers to district level average pesticide use in 2002-03. All
other inputs from table 6 part A and Region FE included.

Table 12: Prior and Pesticide Use
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Net Profit
(1) (2) (3) (4)

Prior −2.204∗ −2.332∗ −1.669 −2.135
(1.285) (1.298) (1.323) (1.354)

Household X X X
Information X X
Yield Difference X

Observations 2,148 2,148 2,148 2,140
Adjusted R2 0.323 0.329 0.337 0.335

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Prior refers to district level average pesticide use in 2002-03. All other inputs
from table 6 part A and Region FE included. Column (4) also includes for
yield difference between 2002 and 2012 as measured by AICCIP data.

Table 13: Prior and Net Profit

B Appendix: proofs

B.1 Proof of lemma 1

Proof. We want to show that given any prior belief µ0 the DM’s optimal choice of observing a cell
at any stage t where the DM’s belief is given by µt depends only on µt and not the history of µs for
s ≤ t. This is sufficient because if µs alone determines the choice of cell p then the DM’s problem
can be written as optimal choice of p given µt which is described in the value function V (µt).

The strategy of observing any cell generates a unique partition of the state space Ω. For
example, if the DM chooses to observe a cell in the matrix, it can have two possible values, namely
0 or 1. Thus observing the cell is equivalent to partitioning the state space into two blocks, one
where the cell takes value 1 and the other where it takes 0. Whereas if the DM observes an average
it can take values in

{
0, 1/n, 2/n, . . . , 1

}
.

Once the DM observes the realization in a given cell he chooses the block of cells that contains
the true state. For example, if he observes an average where there is only 1 cell that generates
Y = 1 then he would learn that the true state belongs to the block of states where the average
takes the value 1/n. If now he observes another cell from the same row (or column) then that cell
can take value 0 or 1, which would further divide the new subset into two blocks and the DM would
learn which block contains the true state.

Thus any learning strategy can be described as a sequence of partitions where the DM learns that
true state belong to the intersection of relevant blocks. Given the partition consistency condition,
the DM cannot further update his belief about the states in the block without further observation.

Now suppose there are two histories that generate the same belief µ′ but the optimal strategy
following them would be different. Note that, for both two histories, say µ1 and µ2 the resulting
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subset that contains the true state under µ′ must be the same otherwise the belief µ′ cannot be
same.

This implies there are three possible ways in which the two histories are different. First, the
same cells are observed but in a different order. Since the intersection of sets is commutative and
each cell generates a unique partition of Ω the order of partition is irrelevant for decision making.

Second, under one of the histories, say µ1 one cell has been observed that was not payoff relevant,
i.e, the updating did not reduce any uncertainty, but this would imply the strategy chosen under
µ1 was not optimal.

Third, there exist multiple sequences of cells observing which would generate the same partition.
In that case, the DM must be indifferent about choosing any of two sequence which again implies
it cannot be relevant for future decision making. Otherwise ex-ante the DM would not choose one
of the two histories optimally.

Thus any tth round belief µt denotes a unique subset of states that contains the true state and
hence the optimal policy only depends on the belief µt and not on the entire history.

B.2 Correlation of cells and Uncertainty

Result 2. For any two beliefs µ1 and µ2 if all else being equal if there exists a pair of cells (si, pj)
and (sk, pl) such that the two cells are more correlated under µ2 then H(µ1) > H(µ2), i.e, µ2 would
have higher uncertainty.

Proof. All else being there are four possibilities where µ1 and µ2 differ. They are as follows:

1. π(si, pj) = 1 and π(sk, pl) = 1

2. π(si, pj) = 1 and π(sk, pl) = 0

3. π(si, pj) = 0 and π(sk, pl) = 1

4. π(si, pj) = 0 and π(sk, pl) = 0

Higher negative correlation implies the probability of possibility 2 and 3 are higher than that of
1 and 4 and opposite for positive correlation. However, in both cases, the possible values are less
spread since once two out of the four possibilities are more likely. For a lower value of correlation
the probability of all four possibilities are closer. If all else are equal then the belif µ2 where there
is greater correlation the uncertainty is also lower.

Note that, this result does not depend on number of possible values of Y . If there are more
than two possible values of Y then one strict subset of possibilities for the payoffs of the two cells
have a higher probability compared to other possiblilities. This implies the uncertainty would be
lower when correlation is higher.
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B.3 Proof of lemma 2

Proof. As noted before observing a cell (si, pj) partitions the state space into two blocks, namely
B0,(i,j) where π(si, pj) = 0 and B1,(i,j) where π(si, pj) = 1. Further learning is only optimal if the
observed cell generates Y = 0 otherwise the DM would choose the observed cell. Let πt denote the
expected payoff in round t with belief µt, i.e., πt is the probability of the cell(s) that has the highest
probability of generating Y = 1 without further learning. To prove the lemma two observations
are to be made.

Observation 1: The order of cells observed does not affect the incentive to learn. In each round,
the DM finds the intersection of Blocks, of partitions generated by observing cells, where the true
state lies. Since intersection is commutative the order of observation does not change the posterior
belief. In this lemma, the objective is to compare two strategies where the order of observing cells
are rearranged, since given a belief µt in any period the same set of cells are to be observed when
learning is optimal. Even though rearranging the cells generate the same posterior, the order of
observation affects the expected cost as the DM stops learning once he finds a cell with payoff
Y = 1.

Observation 2: Lower Rci,j(µt) leads to lower expected cost of learning. For a given belief µt
the denominator in Rci,j(µt) remains the same for all cells. The numerator is lower is either πt,(i,j),
i.,e., the total probability of all states in B1,(i,j) is lower or the residual uncertainty is lower. This
implies if a cell with lower Rci,j(µt) either it has a higher probability of generating Y = 1 or in case
it generates Y = 0, the cell is correlated with another subset of cells that has a higher probability
of generating Y = 1. In both cases, fewer cells need to observe and hence the expected cost is
lower.

The objective is to show that a higher one-period expected payoff implies a higher net value from
learning. Let us start with two cells, namely (si, pj) and (si′ , pj′) where πt,(i,j) takes the highest
value and πt,i′,j′ has the second highest value in the payoff matrix. There are three possibilities
that need to be considered.

Case 1:

πt,(i,j) + (1− πt,(i,j))πt+1|(i,j)=0 < πt,(i′,j′) + (1− πt,(i′,j′))πt+1|(i′,j′)=0 (2)

This implies πt+1|(i,j)=0 < πt+1|(i′,j′)=0, i.e, after observing cell (i′, j′) to be generating Y = 0 the
DM finds a cell (k, l) such that

πt+1,(k,l) > πt+1,(i,j).

If the DM observes (i, j) first then the possible sequence of learning would be given by (i, j) followed
by (i′, j′), followed by (k, l). The alternate strategy is to start with (i′, j′), followed by (k, l) followed
by (i, j). By observation 1 the rest of the learning startegy will not be affected after any of these
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two strategies. Note that, under strategy 2 the DM observes a cell (k, l) with highest probability
of generating Y = 1 is later period. The second would be better if

cl(1 + πt,i′,j′ + πt,i′,j′πt+1,(k,l)) < cl(1 + πt,(i,j) + πt,(i,j)πt,i′,j′)

πt,i′,j′(1 + πt+1,(k,l)) < πt,(i,j)(1 + πt+1,i′,j′)

πt+1,i′,j′(πt+1,(k,l) − πt,(i,j)) < πt,(i,j) − πt+1,(i′,j′) (3)

Note that, in this example πt+1|(i,j)=0 = πt+1,(i′,j′) and pit+1|(i′,j′)=0 = πt+1,(k,l), so rearraging
equation ?? we get

πt,(i′,j′)(πt+1,(k,l) − πt+1,(i,j)) < πt+1,(k,l) − πt,(i,j) (4)

This is true πt+1,(i,j) = πi′,j′ otherwise observing (si, pj) is informative about (si′,j′) and observing
(si, pj) would be strictly better. Note that inequality 4 would imply inequlaity 3 if πt+1,(k,l) <

3πt,(i′,j′ ) as πt,(i,j) ≥ πt,(i′,j′). Since πt,(k,l) ≤ πt,(i′,j′) the condition πt+1,(k,l) < 3πt,(i′,j′ ) holds true,
i.e, if not the DM would choose to observe (k, l) before (i′, j′). Thus the second strategy is optimal.

Case 2:

πt,(i,j) + (1− πt,(i,j))πt+1|(i,j)=0 < πt,(i′,j′) + (1− πt,(i′,j′))πt+1|(i′,j′)=0 (5)

This can happen if after observing π(si, pj) = 0 the DM finds a cell (k, l) such that πt+1,(k,l) >

πt+1,(i′,j′). In this case (i, j) has a higher probability of generating Y = 1 and also more informative,
so observing (i, j) before (i′, j′) reduces the expected cost of learning.

Case 3:

πt,(i,j) + (1− πt,(i,j))πt+1|(i,j)=0 = πt,(i′,j′) + (1− πt,(i′,j′))πt+1|(i′,j′)=0 (6)

In this case after observing (i′, j′) πt+1,(i,j) remains the highest, i.e., observing (si, pj) remains
optimal. Given the belief µt here the cell with lower Rci,j would generate a lower expected cost
given observation 2. If πt,(i,j) is sufficiently high then Rci,j < Rci′,j′ and observing (si, pj) is optimal.
Otherwise the residual uncertainty by observing (si′ , pj′) dominates and makes (si′ , pj′) the optimal
choice.

Finally, if both πt,(i,j) = πt,i′,j′ and Rci,j = Rci′,j′ , observing any order of observation would
generate the same belief and have same expected cost hence the DM would be indifferent between
them.
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B.4 Proof of lemma 3

Proof. Let cell (si, pj) be the optimal cell to observed, i.e., satisfies the condition given in lemma
2. Let Et(V |(i, j)) denote the expected payoff from observing cell (si, pj), then learning is optimal
only if,

Et(V |(i, j))− πt ≥ cl

where πt denotes the expected payoff from no further learning is round t. The proof consists of two
steps. First, how H(µt+1|B0,(i,j)) characterizes the optimal learning and second H(µt+1|B0,(i,j))
and H(µt) has a one-to-one relationship given πt and Rci,j .

First note that given πt and cl the value of learning depends only on Et(V |(i, j)). There are
two possibilities, namely (si, pj) generates Y = 1 which happens with probability at most πt given
lemma 2. However, if (si, pj) generates Y = 0 then the value of learning depends on further
possibility of learning given the updated belief. The objective is to characterize the possibility of
further learning given π(si, pj) = 0 by H(µt+1|B0,(i,j)).

There are two opposing effects of higher H(µ), namely if high H(µ) implies there are a greater
number of possible states then the expected cost of learning is higher then higher uncertainty H(µ)
leads to a smaller value of learning. Whereas if high H(µ) implies that the belief can possibly
change significantly then higher uncertainty H(µ) implies a higher value of learning.

To show this consider the two extreme cases, if µ is close to uniform then the payoff from
different cells are independent, i.e, observing one cell does not change the belief over the payoff
from other cell. If µ reduces from the uniform belief then the cells become more informative about
each other and this would decrease the expected cost of learning. On the other hand, if uncertainty
is so small such that observing a new cell cannot change the belief further then there is no value in
learning. If another belief µ has ε higher uncertainty then the value from learning increases.

Given the same πt and Rc let us consider three possible beliefs µ1, µ2 and µλ that can be
generated when π(si, pj) = 0 where H(µλ) = λH(µ1) + (1 − λ)H(µ2). WLOG let Eµ1V > Eµ2V ,
i.e, the value from learning for belief µ1 is higher. To show that EµV is quasi-concave in H(µ) it
needs to be shown that EµλV ≥ Eµ2V , i.e., the expected gain from µλ is higher than the lower
value.

For any two beliefs µ and ν, H(µ) > H(ν) if either µ gives positive probability to more states
and/or µ is closer to uniform. Let H(µ1) > H(µ2), then H(µλ) > H(µ2). Since µ1 has a higher
value from learning it must be the case that the effect of having more states is dominated by the
possibility of further learning. Since H(µλ) lies in between H(µ1) and H(µ2), the expected number
of cells to be observed to obtain Y = 1 is bounded by the expected number of cells by that of µ1

and the expected change in belief is at least as high as µ2. This implies that the net benefit from
observing is at least as much as high as Eµ2V .

Similarly, if H(µ1) < H(µ2), then H(µλ) < H(µ2). In this case, the effect of the lower expected
cost of learning dominates and since µλ would have a lower cost of learning than µ2 but more
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information content than µ1 implies the gain from learning is at least as much as Eµ2V .
The quasi-concavity of the expected value in H(µt+1|B0,(i,j)) implies that for given cl and πt

there exists an interval in H(µt+1|B0,(i,j)), such that learning is only optimal but not optimal when
H(µt+1|B0,(i,j)) is too high or too low.

Finally, note that

H(µt+1|B0,(i,j)) = 1
1− µt

[
RcH(µt,(i,j)) + ln (1− µt,(i,j))

]
.

Thus if µt = µt,(i,j) then there is a one-to-one relationship between H(µt+1|B0,(i,j)) and H(µt)
given πt and Rc. Even if µt > µt,(i,j) then Rc = Rci,j and hence two beliefs with same H(µt) cannot
degerate two different H(µt+1|B0,(i,j)). Hence there is a one-to-one relationship between H(µt) and
H(µt+1|B0,(i,j)) and thus the interval in H(µt+1|B0,(i,j)) can also be expressed as H(µt) given πt

and Rc. Hence, proved.

B.5 Proof of lemma 4

Proof. When a DM observes an average ai,j where i ∈ {S, P} and j ∈ {1, . . . , n} the state space is
partitioned into several blocks, one for each possible value of the average ai,j . Given the definition
of Rai,j between two averages ai,j and ak,l, average ai,j would have lower Rai,j if either the probability
of generating Y = 1 is higher for ai,j or given that Y = 1 is not generated the resulting uncertainty
as measured by H(µt+1|Bk/n,(i,j)) is lower, where H(µt+1|Bk/n,(i,j)) is the entropy of the belief µt+1

given µt and π(ai,j) = k/n. Let πa1,(i,j) denote the probability that observing average ai,j would
informa about a cell with Y = 1.

Step 1: Let us first consider the case where there are two averages ai,j and ak,l, both have the
same lowest Rai,j but ai,j have a higher expected payoff. Higher expected payoff implies fewer cells
to observe and hence a lower expected cost of learning. Hence observing ai,j would be optimal.

Step 2: To show that observing the average with lowest ai,j is optimal it is sufficient to show that
for any two averages ai,j and ak,l if Rai,j < Rak,l then Eµt(V |ai,j) > Eµt(V |ak,l). Let us consider two
such averages and two possible cases.

Case 1: Suppose πat,(i,j) < πat,(k,l) but Rat,(i,j) < Rat,(k,l). Consider a hypothetical average value
ai′,j′ such that the πak,l = πai′,j′ but Rai,j = Rat,(i′,j′). Then observing ai′,j′ generated lower expected
cost than ak,l, i.e.,

Eµt(V |ai′,j′) ≥ Eµt(V |ak,l).

Also between ai′,j′ and ak,l since πat,(i′,j′) > πat,(i,j) for Rat,(i,j) = Rat,(i′,j′) to hold true πat,(i′,j′) has
to be sufficiently smaller than (1 − πat,(i′,j′)) i.e, the case where π(aπa

t,(i′,j′)
) < 1 dominates. Also,

the expected payoff if π(at,(i′,j′)) < 1 is lower than the expected payoff when π(at,(i,j)) < 1,. These
two observations imply the expected payoff for ai′,j′ has to be lower than that of ai,j . Given step
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1 it would thus be optimal to observe ai,j over ai′,j′ , i.e,

Eµt(V |ai′,j′) ≤ Eµt(V |ai,j).

Combining the two results we get,

Eµt(V |ak,l) ≤ Eµt(V |ai,j)

i.e, observing ai,j is optimal.

Case 2: Suppose πai,j < πak,l but Rai,j ≥ Rak,l. This implies average ai,j has a higher probability of
generating Y = 1 and also average ai,j is not significantly more informative than ak,l. This implies
observing ak,l would lead to lower cost of learning and hence observing ak,l would be the optimal
strategy.

Hence, proved.

B.6 Proof of lemma 5

Proof. Proof of this lemma is similar to that of the proof of lemma 3. There are two steps to the
proof. First, the optimal learning strategy can be characterized by an interval on H(µt+1|Y < 1)
given expected payoff πt,information content Ra and cost of learning ca and second, there is a
one-to-one relationship between H(µt+1|Y < 1) and H(µt).

Proof of the first step is similar to lemma 3. For higher residual uncertainty H(µt+1|Y < 1), i.e,
when learning is optimal, the expected number of averages to be observed is higher and for lower
residual uncertainty H(µt+1|Y < 1) the expected change in payoff due to learning is smaller. Due
to these two opposing effects the value function is quasi-concave in H(µt+1|Y < 1), This implies
that learning is optimal within an interval in H(µt+1|Y < 1).

To prove the second step let us note that the residual uncertainty can be written as

H(µt+1|Y < 1) = 1
1− πat,(i,j)

[
RaH(µt) + ln (1− πat,(i,j))

]
.

Hence given Ra there is a one-to-one relationship betweenH(µt+1|Y < 1) andH(µt) for πat,(i,j) ≤ πt.
Hence, proved.

B.7 Proof of lemma 6

Proof. Since the DM now has access to both cells and averages, learning is optimal if at least one
type of learning is optimal. Lemma 3 and 5 implies that there exists an upper and a lower bound
on H(µt) such that learning is not optimal above the upper bound and below the lower bound.
Note that, none of these bounds are strict, i.e., it is possible that learning is always optimal for
some cost difference δ and belief µ.
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Given the upper and lower bound it is sufficient to show that given expected payoff πt in round
t for any two belief µ1 and µ2 such that H(µ1) > H(µ2) if at µ1 it is optimal to observe cell then
for µ2 it would also remain optimal to observe cell. Also, if at µ2 observing an average was optimal
then it would remain so under µ1 as well. This would generate a cutoff in H(µt) in between the
upper and lower bound such that observing average is not optimal below the cutoff and observing
cell is not optimal above the cutoff, given the quasi-concavity of the value function for each type
of learning in H(µt).

Consider two such belief µ1 and µ2 with H(µ1) > H(µ2) given an expected payoff πt. There
are three possible cases. First, πt,1 = πt,2 but πt,(i,j),1 > πt,(i,j),2, i.e, even though the expected
payoff is same under both beliefs, under µ1 there is a higher probability of fnding a cell with Y = 1
with the optimal cell chosen. In other words, under µ2 the DM chooses a cell (i′, j′) has does not
have the highest probability of generating Y = 1. Second, πt,1 = πt,2 but πt,(i,j),1 < πt,(i,j),2, the
expected payoff from no learning would be same under both beliefs but the optimal cells to be
observed generates possibly lower probability of generating Y = 1. Third, πt,(i,j),1 = πt,(i,j),2 but
πt+1,2|(i,j)=0 > πt+1,1|(i,j)=0, i.e, under µ2 if π(si′,pj′ ) = 0 is observed then the expected payoff is
higher than a similar situation under the case of µ1. Fourth, πt,(i,j),1 = πt,(i,j),2 but πt+1,2|(i,j)=0 >

πt+1,1|(i,j)=0, i.e, opposite of case 2. The resulting strategy would be different in each of these cases
each the incentive to learn is different. Hence, we will consider them separately.

Case 1: Since πt,(i,j),1 > πt,(i,j),2 but πt,1 = πt,2 and H(µt+1,2|B0,(i,j)) < H(µt+1,1|B0,(i,j)), there
exists at least a pair of cells (si, pj) and (sk, pl) such that the negative correlation among them are
significantly higher under µ2 making (si, pj) (WLOG) the optimal cell to be observed under µ2.
Since a higher negative correlation implies informative of cells increase more than that of averages,
if the DM was observing cells under µ1 he would also find it optimal to observe cells under µ2 as
well.

Case 2 : If πt,(i,j),1 < πt,(i,j),2 but πt,1 = πt,2 then there must exist a pair of cells under µ1 that are
more correlated and generates atleast πt,1 compared to µ2. But this would imply that H(µ2) > Hµ1

since more correlation with same expected payoff implies lower uncertainty. Thus this condition
cannot be satisfied.

Case 3: H(µt+1,2|B0,(i,j)) < H(µt+1,1|B0,(i,j)) and πt+1,2|(i,j)=0 > πt+1,1|(i,j)=0, i.e, under µ2 the
residual uncertainty in case π(si, pj) = 0 is lower and µ2 also generates a higher expected payoff
without any further learning. This is similar to case 1, i.e., there exists a pair of cells (si′ , pj′)
and (sk, pl) such that the negative correlation between the two cells are greater under µ2. This
increases the gain from observing cell under µ2. Hence, if the DM was observing cells under µ1

then he would also observe cells under µ2.
Since the possible gain from an average is bounded by the gains from cells as expected gain from

cells increase the gain from average increases but is bounded by the change in payoff from cells as
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πt+1,2|(i,j)=0 > πt+1,1|(i,j)=0, i.e, the probability of obtaining Y = 1 by observing cells increases. If it
was optimal to observe cells before it would remain so after the gain from observing cells increase.

Case 4: H(µt+1,2|B0,(i,j)) < H(µt+1,1|B0,(i,j)) but πt+1,2|(i,j)=0 < πt+1,1|(i,j)=0, i..e, the residual
uncertainty in case π(si, pj) = 0 is lower but µ2 generates a lower expected payoff without any
further learning. In this case the expected gain from observing a cell reduces due to a lower
probability of obtaining Y = 1.

There are two possible scenarios where H(µt+1,2|B0,(i,j)) < H(µt+1,1|B0,(i,j)) but πt+1,2|(i,j)=0 <

πt+1,1|(i,j)=0. First, there exists at least one pair of cells (si′ , pj′) and (sk, pl) such that the two cells
are more positively correlated under µ2 than under µ1. Second, the level of correlation is same
for all pairs of cells under µ1 and µ2 but the belief is less diffused under µ2, i.e, when the DM is
relatvely more sure about the best choice of cell and in case that cell generates Y = 0 there are not
many other cells that would generate Y = 1 with a higher probability.

In the first case, the cells are more informative but the informativeness of the averages can
increase as well. If the pair of cells (si′ , pj′) and (sk, pl) belong to different column and rows then
the change in uncertainty would not change the relative informativeness of cell and average. Hence,
if it was optimal to observe the cell under µ1 with an increase in correlation of cell it would remain
so.

If however, (si′ , pj′) and (sk, pl) belongs to same row or same column the informativeness of
cell and average both increases. But since the two cells are more correlated in the case where the
observed cell generates π(si′ , pj′) = 0 observing another cell become less profitable. But if the DM
observe avearges he cannot distinguish perfectly between the two possibilities where π(si′ , pj′) =
0, π(sk, pl) = 1 and π(si′ , pj′) = 1, π(sk, pl) = 0. In these two cases observing cell would generate
weakly higher payoff by reducing expected cost of learning. For the other two possibilities the cell
and average are equally informative. Thus observing cell becomes more profitable under µ2 where
the pair of cells (si′ , pj′) and (sk, pl) are more correlated.

In the second case, the net benefit from learning decreases as the uncertainty of the belief is
lower and expected payoff in case Y = 0 is lower as well. In case the cells for which the probability
of generating Y = 1 changes (either increases or decrease) then the informativeness of the cell and
the average change similarly. This is because averages take one values with higher probability and
one of the cells generate Y = 1 with probability but every other cell generates Y = 1 with lower
probability. But the increase in benefit from averages is bounded by the benefit from cells unless
µt+1,(i,j)=0 = 0 and costs do not change. This means if the DM was observing cells at µ1 then
observing cells remain optimal under µ2 as well. In case µt+1,(i,j)=0 = 0 no learning is optimal at
µ2.

If the cells that have a different probability of generating Y = 1 belong to different rows and
column then relative information content between cells and averages do not change between µ1 and
µ2. However, the benefit from learning decreases overall, hence the DM either continue observing
cells or stop learning. Hence, for µ2 observing a cell is optimal if it was optimal under µ1.
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On the other hand, if uncertainty increases from µ2 to µ1, then it must be true that under µ1

are either less correlated or the belief is more diffused, i.e, more cells can generate Y = 1 probability
with similar probability. In both cases πt,(i,j)=0 is lower under µ1. However, under µ1, the set of
possible values for the average increases, which implies the averages can resolve more uncertainty
under µ1 (µ1 also has more uncertainty). Thus averages are relatively more informative when
πt,(i,j)=0 is lower making observing average more profitable under µ1 as well.

However, this does not guarantee that there exists valued of H(µt) such that learning by cell
or average is at all. Also, if the average is not informative and δ is sufficiently large then it is
possible that there exists values of H(µt) for which learning an average has become uninformative
but observing a cell has a prohibitive. This generates the two cutoffs in the middle. Again all these
cutoffs need not be strict, the length of any of the intervals can go to zero.

B.8 Proof of theorem 1

Proof. For this proof, we consider the optimal learning strategy of the DM. Lemma 6 describes
the optimal choice for the recursive learning problem. Thus the proof of this theorem would be an
application of lemma 6.

Lemma 6 implies the if H(µ0) ∈ (H l(π0), Hh)(π0) observing an average is optimal and for
H(µ0) ∈ (H l(π0), Hh)(π0) obseving a cell in round t is optimal. The assumption of no crucial cells
implies that observing a cell cannot increase the uncertainty of the belief in the following round
and observing a cell cannot increase the information content of averages for the payof matrix.

Thus if the DM starts with observing cells then observing cells will continue to be optimal since
unceratinty of belief µt for any subsequent round t > 0. If the DM starts with observing an average
in round t = 0 then it is possible that there exists a round s such that H(µs) ∈ (H l(πs), Hh)(πs)
since H(µs) < H(µ0). In this case the DM will switch to observing cells.

However, the optimal intervals depend on the value of πt. We need to check whether a DM
who observes a cell that reduces πt can switch to observing averages in the next round. Suppose
there are two round t and t+ 1 such that πt > πt+1. Since H(µt) < H(µt+1)( by assumption of no
crucial cell) the remaining cells at t+ 1 has a lower probability of generating Y = 1.

This would imply the gain from observing an average or a cell decreases between t and t + 1
due to a lower probability of obtaining Y = 1. However, a lower level of uncertainty would imply
the averages cannot take many possible values reducing the information content of the averages.
Since cells always take only two possible values, these would not be the case with cells. Thus if the
DM was observing at period t it would optimal for him to observe cell in period t+ 1 as well.

This implies if a DM starts by observing a cell he would continue observing cells in the subse-
quent period and if the DM starts with averages he can continue observing only averages or switch
to cell.

Note that, if ca is sufficiently high, i.e., δ is sufficiently low then (H l, Hh) is smaller compared
to (H l, Hh) for all πt, similarly if cl is sufficiently high, i.e., δ is sufficiently high then (H l, Hh) is
smaller compared to (H l, Hh) for all πt. In the former case observing only cells would be optimal
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and in the later case observing averages is optimal.

B.9 Proof of corollary 1

Proof. Givem lemma 6 the DM would start by observing averages only ifH(µ0) ∈ (H l(π0), Hh)(π0).
However observing only averages would be optimal if either one of the three possible cases hold
true,

Case 1 For some t DM discover a cell with Y = 1 by observing an average and for all s ≤ t,
H(µs) ∈ (H l(πs), Hh)(πs). However in this observing only averages guarantess Y = 1, i.e., selective
learning is not payoff relevant.

Case 2 For some t DM observes an average and updates his belief to µt+1 such that H(µt+1) <
Hl(πt+1), i.e, no further learning is optimal and and for all s ≤ t, H(µs) ∈ (H l(πs), Hh)(πs). In
this case average is sufficiently informative and cl is not too small. Note that, here observing only
averages does not guarantee Y = 1.

Case 3 Finally for some t the DM observes an average such that H(µt+1) ∈ (Hh(πt+1, H l(πt+1))
and for all s ≤ t, H(µs) ∈ (H l(πs), Hh)(πs). This can happen only if cl is sufficiently high even
though averages are not very informative.

B.10 Proof of corollary 2

Proof. From theorem 1, we know given ca if cl is reduced, i.e, δ is reduced then the DM can change
his strategy would become more likely to observe cells. Note that, if before the change in cost the
DM was only observing cells then the reduction in cl can only increase the incentive to learn for
the DM. Since observing more cells increases the probability of finding a cell with a payoff of Y = 1
a reduction in cost would only reduce the probability of making mistake.

Hence we will only need to consider the cases where the DM was observing only averages or
observing both cells and averages. We have shown that observing averages does not necessarily
reveal the true state, hence due to reduction the δ if the DM chooses to observe cells as well then
the precision of posterior cannot reduce.

Thus the only possible case is where the DM was observing both averages and cells but switch
to observing only cells then the precision of posterior can decrease. However, we need to show this
would be the optimal choice for the DM. Consider the following case, where the DM was observing
averages before cells to narrow down the possible rows or column to find the optimal cell. However,
after a change in δ he only observes cells.

This is possible where observing averages are not very informative, i.e, the DM needs to observe
many averages to be able to find the optimal row or column to observe. In this case, if the
cost of cells become sufficiently small such that the DM would rather start with cells. Since the
uncertainty reduced by averages are different than that by cells, it is possible under the former
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strategy the net gain from learning cells were higher when the DM narrowed down the row or
column to observe compared to the later when the DM opens several cells directly reducing the
uncertainty significantly. In this case, the DM may stop short of learning the true state.

Consider the decision problem where n = 3 and the prior belief of the DM is that exactly five
out of nine cells contain Y = 1 where each cell is equally likely to generate Y = 1. If the cost
of observing cell, cl ∈ (.278, .3) then it is optimal for the DM to start with observing average and
switch to observing cell from a different row or column if the observed average is .33.

Now if the cost of learning cells decreases to a value between cl ∈ (.267, .277) then the DM would
optimally choose to observe at most one cell for sufficiently high ca. The resulting uncertainty in
the second case would be higher and would lead to a lower expected gross payoff.

B.11 Proof of corollary 3

Proof. From theorem 1 we know given cl if ca reduces, i.e, δ increases the DM can switch learning
strategies. First of all, if at the initial level of δ the DM was only observing only averages then
any reduction in cost can only increase learning, i.e, the DM would uncover weakly more averages
leading to a more precise posterior belief.

So, we only need to consider the case where DM was either observing only cells or observing
averages followed by cells. In case the DM was only observing cells if after the cost reduction he
starts to observe averages as well then also the posterior precision cannot decrease. Since averages
reduce more uncertainty for a higher level of uncertainty switching from only observing cell to
observing averages followed by cells allows the DM to narrow down his search of cells and thus
weakly increases the posterior precision. The same argument applies when the DM continues to
observe both cells and averages.

Thus we need to consider the case where an increase in δ leads the DM to observe only averages
when he was previously observing both or only cells. Consider the case where the DM was previously
observing both, namely starting with averages and narrowing the possibilities and then observe cells
but after a change in cost only observes average.

Since averages are not necessarily fully informative, switching to only averages can reduce the
precision of posterior, i.e, increase the probability. But this would only be optimal if the cost of
only observing average strategy is significantly lower. If averages become significantly cheaper such
that the DM finds it optimal significantly more averages than before, then for some prior it is
possible that after observing this bigger set of averages the additional gain from observing any cell
becomes much smaller. If the cost of observing cell cl is sufficiently higher compared to the smaller
gain in payoff then the DM would optimally choose to not learn about cells reducing the precision
of posterior.

Consider the following decision problem where n = 3 and the prior belief of the DM is that
exactly six out of nine cells contain Y = 1 and all cells are equally likely to generate Y = 1.

Suppose initially ca < .133 and cl ≤ .33 but δ < .2 . In this case, optimal strategy is to observe

57



the average and then observe a cell if the value of the average is .67. The final payoff, in this case,
is 1 and there is no probability of mistake.

If now ca reduces significantly whereas the cl remains the same such that δ > .2 then observing
only averages become optimal. But in that case, if there are exactly two cells in each row and
column that gives Y = 1 the expected gross payoff is less than 1 and the probability of mistake is
.33.

B.12 Proof of proposition 2

Proof. Consider a follower DM i in period t = 1 who chooses to observe the action of a leader
DM j. If the DM i has chosen input combination (si, pj) then the follower DM i knows that the
expected gain from opening another cell is less than cl and the expected gain from another average
is less than ca since DM i knows the cost of learning for j.

Given the common prior the DM i can update his belief by partitioning the state space since
he knows the true state must belong to the block where the expected gain from learning given the
choice of input strategy is bounded by the costs cl and ca. Let us denote this updated belief by
µi,j0 . Let µi,j0 (ω) denote the probability for any state ω upon social learning.

For example, let n = 3, i.e., there are 9 possible input combination and the common prior is
the uniform belief over all the production models where exactly one cell generates Y = 1. Suppose
the costs of learning is such that DM would not stop learning unless there are only three cells left
to be opened. If the follower DM i learns that the leader DM j has chosen cell (sk, pl) then DM
i infers that either DM j has uncovered the cell (sk, pl) and has learned that it generates Y = 1
for sure or the DM j has opened 6 cells excluding cell (sk, pl) all of which have generated Y = 0.
Since the follower DM i does not observe the learning strategy of j his updated belief would be
such that the state where cell (sk, pl) has probability .92 and all other eight states have probability
.01 of generating Y = 1.

However, since DM j may not have the same payoff matrix as DM i, he needs to incorporate
his belief νi,j about the closeness of the two DMs. Given νi,j the updated belief post social learning
for any state ω would be

µS0 (ω) = νi,jµ
i,j
0 (ω) + (1− νi,j)µ0(ω)

where µ0(ω) deonte the common prior belief and µS0 denote the belief upon social learning.
Then the DM i would choose a decision optimally based on µS0 . Note that, since the uncertainty

in µij0 would be lower than µ0 as µij0 is the result of learning by DM j the belief µS0 would also have
a lower uncertainty than µ0.

Compared to the common prior µ0 since µS0 has lower uncertainty the incentives to learning
change. Let us consider the extreme case where νi,j = 1, the leader j has the same state as that of
follower DM i, then given the same cost of learning it would not be optimal for i to learn further
given his belief after social learning. This implies by corollary 2 and 3 if one of the two costs
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reduces substantially such that the DMs in period t = 0 switches to using only one type of learning
strategy form observing both average and cell sequentially. This would, in turn, imply that the
follower DM i would also choose not to learn further and experience lower gross expected payoff as
the probability of error propagates through µS0 .

In case νj < 1, i.e., the two DMs do not share the same payoff function, if νi,j is sufficiently
large similar effects would take place. This is because for sufficiently high νi,j under the updated
belief µS0 the net gain from learning is lower than the net gain under µ0 and hence social learning
would reduce the learning incentive of the follower DM i and the probability of error would also
propagate. If any ε cost of social learning is introduced such that the follower DM i would only
observe the action of DM j only if it reduces his private cost of learning then the result holds true.

B.13 Proof of lemma 7

Proof. The proof consists of four steps. First, given an expected payoff πt in round t, if there are
two possible beliefs µ1 and µ2 such that H(µ1) > H(µ2) and at µ1 it is optimal for the DM to
observe a cell then it would remain optimal for the DM to observe cell for µ2 as well. Second, if at
µ2 observing an average is optimal then it would remain so under µ1 as well. This would generate
a cutoff value of H(µ) such that given expected payoff πt, observing cells are optimal for the DM
only when the uncertainty of the belief is lower than this cutoff and observing averages would be
optimal when the uncertainty of belief is higher than the cutoff.

Third, given expected payoff πt and informativeness of cells Rct , observing cell is optimal only if
the level of uncertainty is within an interval. Fourth, given expected payoff πt and informativeness
of averages Rat , observing average is optimal only if the level of uncertainty is within an interval.
This would generate the upper and lower bound on uncertainty such that learning is optimal only
within the range of the upper and lower bound.

Step 1 : Let µ1 and µ2 be two possible beliefs such that H(µ1) > H(µ2) but πt,1 = πt,2. There
are four possible cases, three of which is similar to lemma 6.

Case 1: Let µt,xk̄πt,(i,j),1 > µt,xk̄πt,(i,j),1, i.e., µ1 has a higher probability of generating Y ≥ xk̄.
This implies under µ2 the DM optimally observes a cell that generates a lower probability of
generating Y ≥ xk̄ than the cell with highest expected payoff. This is optimal only if the value of
learning is higher under µ2 when observed cell generates Y ≥ xk̄. Hence, there exists a pair of cells
(si′ , pj′) and (sk, pl) such that the negative correlation between the two cells are higher under µ2.
Since a higher correlation among cells makes cells more informative compared to averages, if the
DM was observing cells for µ1 he would continue observing cells under µ2.

Case 2: Let µt,xk̄πt,(i,j),1 = µt,xk̄πt,(i,j),1 but xk̄,1 > xk̄,2, i.e, even though the expected payoff
from observing the optimal cell is same the set of possible values under µ1 takes more extreme value
compared ]mu2. With m = 2 this can never be the case. This implies under µ2 there is lower value
from learning for both types. However, if the same expected payoff is generated different set of
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values of xk the averages cannot be able to distinguish between possible cases. Thus informativeness
of average remains the same under both the belief. If observing cells were optimal under µ1 then
the DM would optimally choose either to observe cells or no learning at all.

Case 3: Let µt,xk̄πt,(i,j),1 = µt,xk̄πt,(i,j),1 and xk̄,1 = xk̄,2, but πt+1|(i,j)<xk̄,2 > πt+1|(i,j)<xk̄,1, i.e,
if the DM observes Y < xk̄ then the value of learning is higher under µ2. Similar to the logic of
lemma 6 this can happen only if there exists at least a pair of cells (si′ , pj′) and (sk, pl) such that
the negative correlation between the two cells are higher under µ2 than under µ1 making the cells
more informative under µ2.

Case 4: Let µt,xk̄πt,(i,j),1 = µt,xk̄πt,(i,j),1 and xk̄,1 = xk̄,2, but πt+1|(i,j)<xk̄,2 < πt+1|(i,j)<xk̄,1, i.e,
if the DM observes Y < xk̄ then the value of learning is lower under µ2. Again similar to lemma 6
this happens when a pair of cells are more positively correlated or given a level of correlation the
dispersion in probability of generating a cell with Y > xk̄ is higher under µ2. In both the two cases
the increase in informativeness of the avearge is bounded by that of the cells making cells optima
under µ2 as well.

Step 2 : Suppose observing averages are optimal under µ2. If uncertainty increases for µ1 then
of the the three possibilities can happen, one, the correlation between the cells decrease under µ1

but xk̄ is same, two, xk̄ is same but the belief is more diffused under µ1 and three, xk̄,1 > xk̄,2 but
the expected value is same.

If the correlation between cells decrease then the informativeness of the cells reduces more
making averages optimal under µ1 as well. If the belief becomes more diffused given a level of
correlation cells are relatively less informative and observing average remains optimal under µ1.
Finally if xk̄,1 > xk̄,2 then relative informativeness of average remain same but cells become less
informative under µ2 (same as case 2 in step 1). If observing averages was optimal under µ2 it
would remain so under µ1 as well.

Combining step 1 and step 2, there exists a cutoff value of H(µ) such that learning cells is
optimal below it and learning averages is optimal above it given πt.

Step 3 : Similar to the proof of lemma 3 it can be shown that the value of learning cells is quasi-
concave in residual uncertainty of cell, Et(H(µt+1|Bk<k̄,(i,j))) and given Rctthere is a one-to-one
relationship between E(H(µt+1|Bk<k̄,(i,j))) and H(µt).

The proof quasi-concavity is similar to lemma 3, higher uncertaintyon one hand, increases
the expected number of cells to be observed leading to a higher cost of learning but on the
other hand, also implies higher spread in possible values. Additionally a higher spread in val-
ues can imply higher likelihood of getting a higher value xk through learning. Thus there are
two opposing effects of higher uncertainty. For any belief µλ such that E(H(µt+1,λ|Bk<k̄,(i,j))) ∈
[E(H(µt+1,2|Bk<k̄,(i,j))), E(H(µt+1,1|Bk<k̄,(i,j))) if V (µ2) ≥ V (µ1) then the the effect of higher ex-
pected cost dominates thus V (µλ) ≥ V (µ1). In the other case, if V (µ2) < V (µ1) then the effect of
higher spread dominates and thus V (µλ) ≥ V (µ2) for a given value of Rct,(i,j).
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For the second part the residual uncertainty can be written as

E(H(µt+1|Bk<k̄,(i,j))) = 1
1− µt,xk

[
RctH(µt) + ln(1− µt,xk)

]
which gives a one-to-one relationship between H(µt) and E(H(µt+1|Bk<k̄,(i,j))) given Rct and πt.

Step 4 : Similar to proof of lemma 5 and step 3 it can be shown that the value of learning cells
is quasi-concave in residual uncertainty of average, E(H(µt+1|k < k̄, ai,j)) and given Rat there is a
one-to-one relationship between E(H(µt+1|k < k̄, ai,j)) and H(µt). This step is similar to step 3
since the value of learning increases in uncertainty as there are higher probability of obtaining a
higher xk (given πt) and lower in uncertainty as the expected number of averages to be observed
increases with uncertainty. Finally, the residual uncertainty can be written as

E(H(µt+1|k < k̄, ai,j)) = 1
1− µt,xk

[
RatH(µt) + ln(1− µt,xk)

]
which gurantees a one-to-one relationship between E(H(µt+1|k < k̄, ai,j)) and H(µt).

Combining steps 3 and 4 generate a lower and upper bound on learning. However, since the
bound for cells depends on Rc and that of averages depend on Ra, it is possible that for some
belief the uncertainty is such that it is lower than the lower bound for average but higher than the
upper bound of cells leading to no learning at all. Also, it is possible that the lower bound for a
cell is higher than average implying observing only average is always better or the upper bound for
average is lower than the upper bound for cell implying learning by cells always optimal. Hence,
proved.

C Extension: Noisy Observations

In the baseline model the learning technology is such that when the DM observes a cell or an
average he can observe the payoff without any noise. In this context I will consider an otherwise
similar model but will relax the assumption of no noise in observation.

Suppose, whenever the DM observes a cell or average he need to also choose with how much
precision he would observe different payoff values. Let γc1,t,(i,j) and γ

c
0,t,(i,j) denote the corresponding

probabilities of observing Y = 1 and Y = 0 when observing (si, pj) in period t and the true payoff
is π(si, pj) = 1 and π(si, pj) = 0 respectively. Note that, it is not assumed that γc1,t,(i,j) = γc0,t,(i,j),
i.e, the DM can choose different level of precision contingent on the state. If γc1,t,(i,j) > γc0,t,(i,j) then
in the state where π(si, pj) = 1 the precision of belief is higher than the case when π(si, pj) = 0

Similarly for averages, let γap,t,(i,j) be the probability of observing π(ai,j) = p in period t for
average ai,j where i ∈ {s, p} and j ∈ {1, . . . , n} when indeed π(ai,j) = p. Also the choice of γa can
be different for different values of p.

The cost of learning now depends only the level of precision both cells and averages. If the DM
chooses to observe a cell and γc1,t,(i,j) and γ

c
0,t,(i,j) as precisions of posteriors when π(si, pj) = 1 and
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π(si, pj) = 0 respectively then the cost of learning is as follows:

Kc(µt, γc1,t,(i,j), γ
c
0,t,(i,j)) = λc

[
H(µt)− Eµt(µt+1|γc1,t,(i,j), γ

c
0,t,(i,j))

]
i.e., the cost of learning is the difference in the level of uncertainty, as measured by Shannon entropy
between the prior and the posterior belief conditional on the choice of γc1,t,(i,j), γ

c
0,t,(i,j). Also, λc is

the marginal cost of learning a cell and there is no fixed cost of learning about different cells. Since
observing (si, pj) only partitions the state space into two different blocks, the difference between
the round t and round t + 1 entropy can be written in terms of the outcome of the observed cell
only.

H(µt)−H(µt|γc1,t,(i,j), γ
c
0,t,(i,j), π(si, pj) = 1) = −

[
µt,(i,j) lnµt,(i,j) + (1− µt,(i,j)) ln (1− µt,(i,j))

−γc1,t,(i,j) ln γc1,t,(i,j) − (1− γc1,t,(i,j)) ln (1− γc1,t,(i,j))
]
,

H(µt)−H(µt|γc1,t,(i,j), γ
c
0,t,(i,j), π(si, pj) = 0) = −

[
µt,(i,j) lnµt,(i,j) + (1− µt,(i,j)) ln (1− µt,(i,j))

−γc0,t,(i,j) ln γc0,t,(i,j) − (1− γc0,t,(i,j)) ln (1− γc0,t,(i,j))
]
.

Similarly, if the DM chooses to observe an average ai,j with precision γap,t,(i,j) for all p ∈{
0, 1/n, . . . , k/n, . . . , 1

}
then the cost of learning is given by

Ka(µt, γap,t,(i,j)) = λa
[
H(µt)− Eµt(µt+1|γap,t,(i,j))

]
Here, also the entropy depends only on the observed average and all possible values teh avearge
can possibly take and there are at most n+ 1 such possible values.

One important observation is that, given the cost is measured in entropy the DM would always
choose to observe a cell or an average only once. This is bacuase Shannon entropy is linear in the
posterior. If the DM breaks learning a cell (si, pj) in two steps such that in the first step he chooses
γc1,t,(i,j) = γc0,t,(i,j) = p and in the second step he chooses γc1,t′,(i,j) = γc0,t′,(i,j) = q then the total cost
of learning in period t would be

Kc(µt, γc1,t,(i,j), γ
c
0,t,(i,j)) = λc

[
H(µt)− Eµt(µt+1|γc1,t,(i,j), γ

c
0,t,(i,j))

]
= −λc

[
µt,(i,j) lnµt,(i,j) + (1− µt,(i,j)) ln (1− µt,(i,j))− p ln p− (1− p) ln (1− p)

]
,

where µt,(i,j) is the probability that cell (sj , pj) would generate Y = 1 given belief at round t and
in period t′ it would be

Kc(µt′ , γc1,t′,(i,j), γ
c
0,t′,(i,j)) = λc

[
H(µt′)− Eµt′ (µt′+1|γc1,t′,(i,j), γ

c
0,t′,(i,j))

]
= −λc

[
p ln p+ (1− p) ln (1− p)− q ln q − (1− q) ln 1− q

]
.
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If instead he has chosen q in round t the cost of learning would be

Kc(µt, γc1,t,(i,j), γ
c
0,t,(i,j)) = −λc

[
µt,(i,j) lnµt,(i,j) + (1− µt,(i,j)) ln (1− µt,(i,j))− q ln q − (1− q) ln (1− q)

]
,

i.e, the sum of the cost distributed in two periods. Thus cost does not reduce if the learning problem
is divided into two steps. The benefit of learning linear and depneds on the posterior belief at the
time of choice from A = S×P . Thus the benefit would not also change if the learning is into more
than rounds. However, between t and t′ he may find another cell that generates Y = 1 and can
save the cost by learning about the t round cell with desired level of precisio, namely, q in round t
only. Thus the DM would always choose to observe one cell or one average only once.

Also, given learning is costly and the main objective of the DM is to maximize net expected
payoff the DM would always choose a cell when he observes Y = 1 as payoff. Note that, unlike
the baseline model this does not imply he would get a payoff of Y = 1 unless he chooses to learn
perfectly about the cell, i.e, γ1,t(i,j) = 1. Since the DM uses the Bayes rule to update the probability
that π(si, pj) = 1 given the DM observes the payoff to be 1 would be

P (πo(si, pj) = 1|πo(si, pj) = 1) =
µt,(i,j)γ1,t,(i,j)

µt,(i,j)γ1,t,(i,j) + (1− µt,(i,j))(1− γ0,t,(i,j))

where πo denote the observed value of the payoff and similarly the probability of π(si, pj) = 0 given
the DM observes the payoff to be 0 would be

P (πo(si, pj) = 0|πo(si, pj) = 0) =
(1− µt,(i,j))γ0,t,(i,j)

(1− µt,(i,j))γ0,t,(i,j) + µt,(i,j)(1− γ1,t,(i,j))
.

In the baseline model for the recursive problem there were three questions needed to answer,
namely, first, whether to learn, second, what to learn, cell or average and third, which cell or
average to learn about. One additional question that needs to be answered in this model, namely,
how much to learn about, what level of precision to be chosen?

The expected payoff of the DM given choices of γc1,t,(i,j) and γ
c
0,t,(i,j) when he decides to observe

a cell would be

Eµtπt = P (πo(si, pj) = 1|π(si, pj) = 1)× 1 + P (πo(si, pj) = 0|π(si, pj) = 1)× Eµt+1,(i,j)=1(πt+1)

+ P (πo(si, pj) = 1|π(si, pj) = 0)× 0 + P (πo(si, pj) = 0|π(si, pj) = 0)× Eµt+1,(i,j)=0(πt+1)

The cost of choosing γc1,t,(i,j) and γ
c
0,t,(i,j) are the same and the DM would optimally choose γc1,t,(i,j)

and γc0,t,(i,j) such that the marginal benefit equals the marginal cost. The marginal benefit from
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γc1,t,(i,j) is given by

∂Eµtπt
∂γc1,t,(i,j)

=
µt,(i,j)(1− µt,(i,j))(1− γc0,t,(i,j))[

µt,(i,j)γ
c
1,t,(i,j) + (1− µt,(i,j))(1− γc0,t,(i,j))

]2 [1− Eµt+1,(i,j)=1(πt+1)
]

+
µ(1− µt,(i,j))γc0,t,(i,j)[

(1− µt,(i,j))− γc0,t,(i,j) + µt,(i,j)(1−−γc1,t,(i,j))
]2Eµt+1,(i,j)=0(πt+1)

and the marginal benefit from γc0,t,(i,j) is given by

∂Eµtπt
∂γc0,t,(i,j)

=
µt,(i,j)(1− µt,(i,j))γc1,t,(i,j)[

µt,(i,j)γ
c
1,t,(i,j) + (1− µt,(i,j))(1− γc0,t,(i,j))

]2 [1− Eµt+1,(i,j)=1(πt+1)
]

+
µ(1− µt,(i,j))(1− γc1,t,(i,j))[

(1− µt,(i,j))− γc0,t,(i,j) + µt,(i,j)(1−−γc1,t,(i,j))
]2Eµt+1,(i,j)=0(πt+1)

Note that, (1−γc0,t,(i,j)) < γc1,t,(i,j) and γ
c
0,t,(i,j) > (1−γc1,t,(i,j)). This implies if

[
1− Eµt+1,(i,j)=1(πt+1)

]
>

Eµt+1,(i,j)=0(πt+1) then the marginal benefit of γ0,t,(i,j) is higher, whereas for
[
1− Eµt+1,(i,j)=1(πt+1)

]
<

Eµt+1,(i,j)=0(πt+1) the marginal benefit of γ1,t,(i,j) is higher. Thus in the former case γ0,t,(i,j) > γ1,t,(i,j)

and in the later case γc0,t,(i,j) < γc1,t,(i,j) for all λc > 0.
In both the two equations the first term measures the extent of type I error multiplied by the

loss in payoff due to the type I error, i.e, concluding Y = 0 when indeed Y = 1. Similarly, the
second term measures the extent of type II error multiplied by the implied loss, i.e, concluding
Y = 1 when indeed Y = 0. Thus if the loss due to type I error is higher the DM would choose a
higher γc0,t,(i,j) and vice-versa.

A similar observation can be made about averages as well. The marginal benefit from changing
the precision when Y = p depends on the change in the probability of relevant error and the loss
due to error. The higher the loss due to an error the more likely the DM would choose a γap that
minimizes the error.

Another important observation is that optimal cell to be observed would now be characterized
by highest one-period net expected payoff and the optimal average would be characterized by the
highest uncertainty reducing average net of cost of learning. This follows directly from lemma 2
and lemma 4 with the addition that the cost of learning now depends on the level of uncertainty,
thus observing two cells or two averages are not equally costly and the net benefit accounts for the
cost difference.

Finally I want to show that an equivalent of lemma 6 also holds true for this specification.
Before stating the lemma let us redefine the information content in terms of observed value of
payoff rather than actual value of payoff.

Rc,ki,j (µ) =
∑
ω∈B0,(i,j)

µ(ω|πo(si, pj) = 1) ln(µ(ω|πo(si, pj) = 1))
H(µ) .
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Ra,kt,(i,j) =
∑
ω|Y <1 µt(ω|πo(ai,j) = p) lnµt(ω|πo(ai,j) = p)

H(µt)

Also, the information content of cells and averages are defined as the information content of the
optimal cell and optimal average respectively.

Lemma 8. At any round t given expected payoff πt, information content for cell and average Rc,k

and Ra,k and marginal costs λc and λa, the optimal learning strategy in round t is as follows: for
H l ≤ Hh ≤ H l ≤ Hh

1. If uncertainty is in the interval (H l, Hh) then it is optimal for the DM to uncover an average,

2. If uncertainty is in between (H l, Hh) then DM optimally chooses to uncover a cell in the
matrix

3. No learning everywhere else.

Proof. Similar to lemma 7 the proof of this lemma consists of two major steps, one for any two
beliefs µ1 and µ2 such that H(µ1) > H(µ2) it cannot be true that the DM observes average for µ2

but cell for µ1 and two, there is a lower and upper bound in terms of uncertainty such that DM
would never learn outside the interval generated by the two bounds.

Step 1 : First, let us consider two beliefs µ1 and µ2 such that H(µ1) > H(µ2). Suppose at µ1

the DM chose to observe a cell, then it needs to be shown that for µ2 also the DM would choose
to observe a cell. The proof is similar to that of lemma 6, there are four possibilities, namely,
πk1,t,(i,j) > πk2,t,(i,j), π

k
1,t,(i,j) < πc2,t,(i,j), π

k
1,t,(i,j) = πk2,t,(i,j) with π2,t+1,(i,j)=0 > π1,t+1,(i,j)=0 and

finally πk1,t,(i,j) = πk2,t,(i,j) with π2,t+1,(i,j)=0 < π1,t+1,(i,j)=0. However, if π1,t,(i,j) < π2,t,(i,j) given πt,
where πk denotes the net expected payoff subject to the cost of learning. Also from lemma 6, it
cannnot be the case that πk1,t,(i,j) < πc2,t,(i,j) if H(µ1) > H(µ2), so we need to consider only three
possible cases.

Case 1 : πk1,t,(i,j) > πk2,t,(i,j), i.e, there exists at least a pair of cells (si, pj) and (sk, pl) such that the
negative correlation between the cells are higher under µ2 compared to µ1 and the DM optimally
chooses to observe one of them in round t. However, a higher negative correlation increases both
(1−Eµt+1,(i,j)=1(πt+1)) and Eµt+1,(i,j)=0(πt+1) increasing the marginal gain from learning about cells.
Since the DM optimally chooses marginal benefit equal to marginal cost of learning, his net gain
from learning cells can only increase under µ2. The marginal gain from avearges can also increase
in case the pair of cells are in the same row or column but the gain in avearges in bounded by the
gain in cells. Thus if the DM chooses to observe cells under µ1 then he would continue so under
µ2 as well.

Case 2 : πk1,t,(i,j) = πk2,t,(i,j) with π2,t+1,(i,j)=0 > π1,t+1,(i,j)=0. This case also implies that there
exists a pair of cells (si, pj) and (sk, pl) such that the negative correlation between the cells are
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higher under µ2 compared to µ1 and the DM optimally chooses to observe one of them in round t.
The rest of the analysis is same as before.

Case 3 : πk1,t,(i,j) = πk2,t,(i,j) with π2,t+1,(i,j)=0 < π1,t+1,(i,j)=0. This implies either there exists a
pair of cells (si, pj) and (sk, pl) such that the positive correlation between the cells are higher under
µ2 compared to µ1 and the DM optimally chooses to observe one of them in round t or the level of
correlation between the two beliefs are the same for the observed cell but in case π(si, pj) = 0 the
probability of obtaining Y = 1 is lower.

In case the positive correlation increases, both the two values (1 − Eµt+1,(i,j)=1(πt+1)) and
Eµt+1,(i,j)=0(πt+1) decreases, making the net gain from observing cells lower. If the pair of cells
is in different rows and columns then the net gain from averages decreases in a similar way to the
cell. If observing cells were optimal at µ1 it would be so under µ2 as well. However, if the pair
of cells is in the same row or column then observing cells reduces the need for further learning
compared to average. This is because if the DM observes one of them to be Y = 0 then learning
about another cell generates very low net benefit. However, if the DM were to observe the averages
he cannot differentiate perfectly which of the cells generates Y = 0 thus generating a greater need
to learn. Thus if the DM were to choose cells at µ1, he would continue doing so under µ2 as well.

Finally, if the overall probability if finding another cell with Y = 1 conditional on π(si, pj) = 0
then the incentive to learn decreases for both averages and cells in the similar proportion. If
observing cells were optimal at µ1 then the DM wither chooses to not to learn at all or continue
observing cells since averages do not become relatively better.

A similar logic can be applied to show that if under µ2 the DM was choosing averages then
he would continue choosing averages under µ1 as well. Since µ1 has higher uncertainty one of the
three cases can happen, either the negative correlation between a pair of cells that the DM would
optimally observe is lower under µ1 or the positive correlation for the same is lower or under µ1

the probability of generating Y = 1 is higher conditional on π(si, pj) = 0.
If the negative correlation is lower for µ1 then the net gain for cells are lower by the same logic

as case 1 and 2 and hence if the DM were to observe average under µ2 he would not switch to cells
under µ1 since cells do not become relatively more informative.

In case positive correlation is higher or there are fewer possibilities under µ2 that would generate
Y = 1 the averages can take more possible values under µ1 with flatter belief. If the average can
take more possible values with flatter beliefs the reduction in uncertainty would be higher from
observing an average under µ1. Thus even if the net value from learning by cells due to a higher
probability of generating Y = 1 under µ1 the gain from averages come from learning the level of
payoff, i.e, the possible number of cells generating Y = 1. Thus if the DM chooses to observe an
average under µ2 then he would continue so under µ1 as well.

These observations generate a cutoff value of H(µ) such that observing averages is only optimal
if the uncertainty is above the cutoff and observing cells are optimal are optimal below the cutoff.
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Step 2 : Similar to lemma 3 there is two opposing impact of uncertainty on the benefit of
observing a cell. For higher residual uncertainty the expected number of cells to be observed
is higher and for lower residual uncertainty, observing one more cell cannot increase payoff by
much. However, now the cost of learning also depends on the level of uncertainty where residual
uncertainty refers to the level of uncertainty given the DM has observed π(si, pj) = 0, Similar to
lemma 3 there is a one-to-one relationship between residual uncertainty H(µt+1|πo(si, pj) = 1) and
uncertainty H(µt) given Rc,kt .

For very high uncertainty µt given a level of precision γ1,t,(i,j) and γ0,t,(i,j) is higher. This
implies for high uncertainty the impact of higher cost of learning further reduces the net benefit
from learning. On the other hand for a very low level of uncertainty since the Shannon entropy
is convex in the posterior belief the marginal cost of updating beliefs become very high whereas
the gain from learning is linear and low due to low uncertainty. These two observations combined
generates an upper and a lower bound on the uncertainty of belief such that learning is optimal
only for beliefs where uncertainty is within the interval.

Similarly following the steps of lemma 5, the level of residual uncertainty has two opposing effect
on the benefit of learning and given Ra,kt there is a one-to-one relationship between the residual
uncertainty H(µt+1|πo(ai,j) < 1) and H(µt). Also, the expected cost if higher for high uncertainty
and the marginal cost is higher for lower uncertainty further strengthening the result from lemma
5. Thus there is an interval on the uncertainty of the belief, where learning about averages is only
optimal if the uncertainty of the belief µt lies within the interval. Combining step 1 and step 2 all
the four cutoffs can be generated. Hence, proved.

Proposition 3. The result of theorem 1 holds true for λc, λa ≥ 0.

Proof. Proof of the proposition follows directly from lemma 8 and the assumption that there are no
crucial cells. The only concern is that as the DM uncovers more cells the expected payoff changes
which can, in turn, reduce the cutoff value at which learning cell becomes optimal and thus even
though the uncertainty is lower for later round the incentive to learn averages increase.

If the expected payoff increases with learning then the cells become more negatively correlated,
i.e, observing πo(si, pj) = 0 becomes more informative. Even if the average becomes more infor-
mative as well, the net gain is bounded by the that of the cells. Thus the DM would not switch to
observing averages optimally.

If the expected payoff decreases along with a decrease in uncertainty it must be the case that
there are fewer possibilities where Y = 1 can be obtained. Thus the possible values that the
averages can take decreases reducing the information content of the average. Also, the lower the
probability of generating Y = 1 lowers the benefit of learning from both cells and averages. Since
the net benefit from averages reduce due to two effects lower uncertainty and lower expected payoff
whereas cells are only affected by lower expected payoff then DM would not switch to observing
averages.

The convexity in the Shannon cost implies the drop in the cost of learning for averages cannot
dominate the drop in uncertainty since averages contain more uncertainty than cells. Thus if
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the DM were choosing cells earlier he would continue so after a reduction in expected payoff and
uncertainty. Hence, proved.
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D Appendix: Experiment

D.1 Mixed Strategy and Compulsory Nine Choices

In the choice task, the subjects have to have nine choices of the combination of color and shape.
In the model the DM can choose a mixed strategy over possible options, to replicate that in the
experiment the subjects should be able to choose any probability distribution over all 81 cells or
9 rows or 9 columns. However, this would make the choice task unnecessarily difficult. Giving 9
choices to the subjects ensures that the subjects has an easy way to mix over combinations. Next,
I will show that this choice does not favor one type of learning strategy over other.

To show this I assume have made is that the subjects will choose color-shape combinations
optimally given their posterior belief. That is if there are p cells that have the same probability of
generating Y = 1 payoff then the subject can choose any mixed strategy over this set of cells. For
this analysis I will consider one type of mixed strategy, however, this is not unique and choosing
any other mixed strategy would not change the results.

There are four possible cases to be considered. First, the subject does not observe any cell
or average at all, i.e, no learning case. Second, the subject only open averages, i.e., average only
learning case. Third, the subject only opens cells, i.e, cell only learning case and finally fourth, the
subject observes both cells and average in any possible sequence, i.e, both learning case. I want to
show that the requirement of choosing 9 input combination does not change the incentive to choose
one strategy more than what is determined by the cost of learning, i.e, the possible complexity is
same under all the cases except no learning.

No learning: Under no learning the subject is indifferent between choosing any cell. This choice
can be achieved by choosing all 9 colors of shapes, each one time. Note that for any lower number
of required choices it is not possible to mix overall 81 cells in the matrix.

Average Only learning: There are two possibilities, namely one, observe only colors or only
shapes and two observe both average color and average shape. If the subject observes the only
shape of color the optimal strategy is to choose the color or shape with the highest average. If
there is only one such row then choose the row or column nine times, or choose each cell in the
row or column once. If there are more than one rows or columns that generate the same number
of ones, then choose one at random and repeat the same choice algorithm.

If the subject observes both colors and shapes then there are three possible conclusions a
Bayesian subject can make. First, the ones belong to the intersection with the highest probability.
Second, the ones belonging to a strict subset of cells for a given row or column. In both of these
cases, the optimal choice is a subset of row or column, i.e, there are at most 9 cells to choose from.
This can be achieved by choosing each of them at least ones and some more than once with equal
probability.

The third case is that the ones lie in the observed block of the payoff matrix. There can be more
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than 9 such cells and selecting a whole row or column is also not optimal. The optimal strategy is
to choose 9 cells at random out of the k cells that belong to unobserved row and column average.

Cell Only learning: Cells can take two possible values generating two possible scenarios for the
DM. First the DM finds a cell with Y = 1 (either the observed cell or one of the unobserved cell
given prior belief) and second, the DM does not find any cell with Y = 1 but finds it optimal to
stop learning. In the first case, the DM should choose the cell generating Y = 1 all the 9 times.

In the second case, if the number of cells to choose from is less than 9 then the subject should
choose each of them once and some more than once at random. In the case where the number of
cells is more than 9 the subject needs to choose a subset of 9 cells at random.

Both learning: If the subject observed both cells and averages then there are similar three
possible cases. First, he finds a cell with Y = 1, which he chooses all nine times. Second, the
probability of generating Y = 1 is highest in a subset of cells forming a row or column. The subject
has less than 9 choices here and should repeat the same algorithm as before. If the subject stops
to learn before finding a row or column average with at least one Y = 1 with certainty then there
can be more than nine cells that have the same probability of generating Y = 1. Thus the subject
should nine of them at random.

This implies under all the cases where the subject decides to learn he can face one of the three
possible situations; one, he finds a cell with Y = 1 and can choose that cell all nine times. Two,
he finds a subset of cells in a row or column generating ones with the highest probability and then
choose them more than once with equal probability. Three, he finds a set of cells with cardinality
more than nine generating Y = 1 with the highest probability. In this cases, he needs to choose
nine of them with equal probability.
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D.2 Learning Task

Figure 7: Learning task: 9× 9 matrix with averages

Figure 8: Learning task: sample cell question

Figure 9: Learning task: sample average question
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Satisfy-Violate
All priors 13.1182654
Prior 1 8.699706741
Prior 2 7.144350918
Prior 3 7.046855746

Table 14: One sided t-stat for proportion difference

Figure 10: Percentage of rounds with no violation

cell then average oscillate
cell only 8.053193547∗∗∗ 5.671363945∗∗∗

average only 5.675196169∗∗∗ 2.968255872∗∗∗

average then cell 5.28156649∗∗∗ 2.518898785∗∗∗

(a) All prior: one-sided t-stat for difference is proportions
cell then average oscillate

cell only 9.780305957∗∗∗ 7.282821705∗∗∗

average only 5.803699627∗∗∗ 2.788364241∗∗∗

average then cell 6.411276004∗∗∗ 3.483703197∗∗∗

(b) Prior 1: one-sided t-stat for difference is proportions
cell then average oscillate

cell only 7.217577097∗∗∗ 8.467816905∗∗∗

average only 6.08747754∗∗∗ 2.994086108∗∗∗

average then cell 6.77413281∗∗∗ 3.774260891∗∗∗

(c) Prior 2: one-sided t-stat for difference is proportions
cell then average oscillate

cell only 9.908199093∗∗∗ 8.002215876∗∗∗

average only 4.653925448∗∗∗ 2.328443077∗∗

average then cell 3.257123621∗∗∗ 0.82966687

(d) Prior 3: one-sided t-stat for difference is proportions72



Figure 11: Chosen learning strategies in percentage
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