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Abstract

In this paper, we consider a market where information is readily available but often
cognitively costly and sellers can directly affect the learning,i.e., obfuscate information
for the buyer in myriad of ways. Using the framework of a one-shot strategic com-
munication game, we model the equilibrium obfuscation behavior of the seller. In our
model, the buyer pays a cognitive cost of learning and the seller can garble the poste-
rior belief distribution of the buyer directly. We find that in equilibrium, if the buyer’s
belief is favorable it is optimal to obfuscate fully, however, in case of unfavorable belief
an intermediate (or zero) level of obfuscation becomes optimal. We also find that the
range of parameters where obfuscation is optimal expands with the cognitive capacity
of the buyer. Our framework is agnostic about the form of obfuscation. Furthermore,
we use two examples, namely, hiding information and providing misleading informa-
tion to demonstrate how our model can be used to make testable predictions across
different obfuscation practices.

1 Introduction

Most consumer purchase decisions come after some degree of information acquisition—
whether it’s comparing multiple options for a desired good, introspecting on one’s pref-
erences, or understanding the total cost and affordability of the good for sale. The nature of
commerce in the Internet age means that (1) this information is readily available but often
cognitively costly to learn, and (2) sellers can directly affect this learning, i.e., obfuscate
the buyer’s learning efforts in a myriad of ways. Dark patterns, misleading advertising, and
direct lying (or fraud) are just some of the ways online sellers affect the learning abilities of
their consumers.

The economic literature on obfuscation can be broadly divided into three styles. In one,
sellers are given the ability to manipulate the search costs of the buyer, increasing the time
it takes to search for a product’s price (Ellison and Wolitzky (2012)). Here, information is
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binary and only the time it takes to acquire it is affected by the firm. Another strategy for
studying obfuscation has been to focus on strategic naivete (Gabaix and Laibson (2006)). In
this literature, some buyers have no or limited ability to understand the negative Bayesian
implications of an obfuscated attribute, while others fully understand. What is left out,
however, is the ability of these individuals to acquire additional information on their own.
That is, there is no learning on the part of either type of consumer. Lastly, there is a
literature on cognitive constraints in such contexts (De Clippel and Rozen (2021), de Clippel
and Rozen (2022)). Here, sellers can choose to obfuscate information, causing buyers to
rely on their own attention or information processing abilities rather than free information.
However, they do not model the ability of sellers to precisely choose how such obfuscation is
performed nor do they model the ability of sellers to directly impact how such information
is acquired by the buyer.

In our approach, we consider a strategic communication model where buyers can obtain
payoff-relevant information subject to the cognitive cost of acquiring it. This information
comes in the form of a distribution of posterior beliefs. This element of our model is similar
to work in Matysková (2018) and Matyskova and Montes (2023)). What we add is the ability
of the seller to costlessly choose a garble of the belief distribution acquired by the buyer.
The buyer then chooses an action based on the garbled information that affects the payoff
of both agents. A similar approach has been studied by Linhares (2021) and Janssen and
Kasinger (2022). Both papers consider strategic communication models where the buyer has
an opportunity to learn by paying a rational inattention (Caplin and Martin (2020)) learning
cost. However, in both models, instead of affecting the information of the buyer directly, the
seller affects the learning cost parameter for the buyer. We will show that our model allows
for a broader range of interpretations, such as hiding information, misleading information,
and outright fraud. In addition, their approach does not allow us to study the heterogeneous
effect of obfuscation on buyers of differing attentional abilities. Allowing the seller to garble
the belief directly allows agents to have heterogeneous learning cost parameters.

Our main finding is as follows: when the buyer has a favorable opinion of the seller,
i.e., would choose the preferred action of the seller given his prior, the seller optimally
chooses no obfuscation in the state where preferences align but choose an intermediate level
of obfuscation in the misaligned state. However, under unfavorable prior, it is optimal for
the seller to choose an intermediate level of obfuscation in all states.
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2 Model

Let us consider a one-shot game with two players, a Seller, and a Buyer. S holds one unit of
an indivisible good that B can buy. There are two possible states of the world, ω ∈ {ω0, ω1}
that denote the valuation of the good for B. The set of actions is denoted by a ∈ {a0, a1}
where a0 denotes the action of not buying and a1 that of buying. The payoff function is as
follows:

u(a0, ω0) = u(a1, ω1) = u > 0 (1)
u(a1, ω0) = u(a0, ω1) = u = 0(WLOG). (2)

B is the Bayesian expected utility maximizer, i.e., wants to buy the good only in state ω1.
However, S always wants to sell the good irrespective of the state. We assume the prior
belief of B is given by µ = Pr(ω1). If µ < 0.5, without further information, B would choose
not to buy the good. We assume S knows the state ω.

Before making the purchase decision, B can learn about the state ω subject to paying
the cost of learning. We assume the cost of learning function is given by a linear function
of the mutual entropy between the prior and the expected posterior belief, a la Rational
Inattention (RI henceforth) literature, as follows,

K(µ) = λEωD(P (a, ω)||P (a)).

where PB(a) and PB(a, ω) denote the unconditional (or prior) and conditional (or posterior)
probability of choosing a by B respectively. Following the tradition of RI literature, we do
not model the signal structure. But for simplicity, we can assume the signal space is also
given by the set of actions, WLOG, i.e.,s ∈ {a0, a1}.

Moreover, we assume S can costlessly obfuscate the learning choices of B. S chooses a
function S : {a0, a1} → {a0, a1} such that any belief PB(a, ω) of B is obfuscated to a garbling
of PB as follows,

PS(a, ω)
µ(ω) =

∑
j=0,1

P (aj, ω)
µ(ω) S(aj, a) (3)

Without loss of generality, we will assume,

S(a0, a0) = p00 ∈ [0, 1]
S(a1, a1) = p11 ∈ [0, 1]
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If p00 = p11 = 1, then there is no obfuscation. We denote p11 = 1 and p00 = 0 as the case of
full obfuscation. An intermediate level of obfuscation refers to p11 ≤ 1 and p00 ≥ 0 with at
least one strict inequality.

The timeline of the game is as follows:

1. S chooses S(aj, a)

2. B chooses PB(a, ω) and learns accordingly

3. PB is obfuscated to PS

4. B chooses an action based on PS

5. Payoffs are realized

We solve the equilibrium by backward induction. First, we solve B’s learning strategy
given S(aj, a). Given B’s optimal learning strategy, we solve for the optimal choice of p00, p11

by S that maximizes PS(a1) = µPS(a1, ω1 + (1 − µ)PS(a1, ω0)), i.e., the obfuscated uncondi-
tional probability of choosing a1, i.e., buying the good. The following lemma describes the
impact of obfuscation choice S(aj, a) on B’s learning strategy.

Lemma 1. The optimal learning strategy of B given the obfuscation choice of S(aj, a) is
equivalent to the optimal learning strategy of B under distorted payoff functions as follows:

v(ai, ω) =
∑

j=0,1
S(aj, ai)u(aj, ω)

Proof. Given obfuscation S(aj, a) B’s utility function becomes,

u(PS(a, ω)) = [PS(a0, ω0) + PS(a1, ω1)]u + [PS(a0, ω1) + PS(a1, ω0)]u (4)

where,

PS(ai, ωj) = S(ai, ai)PB(ai, ωj) + S(a′
i, ai)PB(a′

i, ωj). (5)

Plugging in the values of 5 into 4 we get,

u(PS(a, ω)) =
1∑

i,j=0
PB(ai, ωj)

∑
j=0,1

S(aj, ai)u(aj, ω)

We can conclude the proof by defining v(ai, ωj) = ∑
j=0,1 S(aj, ai)u(aj, ω).
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The main intuition behind the lemma is since the obfuscation strategy creates a garbling
of the original learning strategy of B, it is as if B solves a decision problem with a payoff
function that generates a lower payoff in every state. The linearity of PS(a, ω) in S(aj, a)
generates the linear relationship between the two payoff functions.

Given the strategy of B, we can solve for the optimal obfuscation choice of S. Before
solving the strategy choice of S let us note that if P (ω1|a1) < 0.5, the signal a1 is not
informative about state ω1 and thus B would choose not to learn since learning is costly.
This generates the following condition,

Pr(ω1|a1) ≥ 0.5 (Condition A)

which can be rewritten as

µPS(a1, ω1)
µPS(a1, ω1) + (1 − µ)PS(a1, ω0)

≥ 0.5

i.e., after garbling the signals should be sufficiently informative such that the posterior
probability of state ω1 given the signal a1 remains above 0.5. Thus the seller’s problem is
given by,

max
p00,p11

PS(a1)

s.t. Condition A

Our main result in this model is outlined in the following theorem.

Theorem 1. The following strategy profile describes the obfuscation equilibrium. The seller
S choose p11 = 1 for all values of µ ∈ [0, 1].

i. For µ ≥ 1
2 , S chooses p00 = 0, i.e., full obfuscation.

ii. For µ ∈ ( 1
eu+1 , 1

2), S chooses p00 ∈ (0, 1), i.e., intermediate level of obfuscation.

iii. For µ ≤ 1
eu+1 , S chooses p00 = 1, i.e., no obfuscation.

The buyer B,

i. Does not learn and chooses PS(a1) = 1 (or 1
2) for µ > 1

2 (or = 1
2)

ii. Learns according to lemma 1 and chooses PS(a1) ∈ (0, 1) accordingly for µ ∈ ( 1
eu+1 , 1

2).

iii. Does not learn and chooses PS(a1) = 0 for µ ≤ 1
eu+1 .
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Proof. Step 1: Probability of choosing a1 Let us begin by solving the seller’s problem.
For notational simplicity, let us assume u = ū

λ
. For p00 = 1 and p11 = 1, the seller chooses not

to obfuscate; the probability of choosing a1 is given by the unconditional choice probability
P (a) ≡ pa from the buyer’s problem, given by

pa =


1 if µ ≥ eu

eu+1
eu−(1−µ)−µe2u

2eu−e2u−1 if µ ∈ ( 1
eu+1 , eu

eu+1)

0 if µ ≤ 1
eu+1

For p00 = 0 and p11 = 1, the seller chooses to obfuscate fully and the buyer always gets
a1 signal. In this case, the buyer cannot learn any further. Thus the probability of choosing
a1 is given by,

Pr(a1) =


1 if µ > 0.5

0.5 = if µ = 0.5

0 = if µ < 0.5

For any other value of p00 and p11 the seller chooses an intermediate level of obfuscation
where we can rewrite PS(a) as

PS(a1) = (p11 + µ(1 − p00 − p11))eu − (1 − p00 − µ(1 − p00 − p11))eu(p00+p11)

eu + eu(p00+p11)

Without loss of generality, we can assume p11 ≥ p00, if not, relabelling the signals would
generate the desired inequality.

Step 2: Relationship between PS(a1) and p00, p11 The FOC of PS(a1) w.r.t. and
p11 is as follows:

∂PS(a1)
∂p11

= (1 − µ) + µe2u(p00+p11−1) + (u(p00 + p11 − 1)(1 − 2µ) − 1)eu(p00+p11−1)

For all µ < 0.5, ∂PS(a1)
∂p11

> 0 thus optimally p11 = 1 should be chosen.
Similarly, The FOC of PS(a1) w.r.t. and p00 is as follows:

∂PS(a1)
∂p00

= −µ + −(1 − µ)e2u(p00+p11−1) + (u(p00 + p11 − 1)(1 − 2µ) + 1)eu(p00+p11−1)

For all µ < 0.5, ∂PS(a1)
∂p00

< 0 thus optimally p00 = 0 should be chosen. However, at p11 = 1
and p00 = 0, signals become fully uninformative, thus Pr(ω1|a1) = Pr(ω1) = µ < 0.5, i.e.,
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condition A is violated.
Step 3: Relationship between PS(a1) and pa If PS(a1) < pa it is not optimal for the

seller to obfuscate. We now show that if p00 +p11 < 1, PS(a1) < pa. Thus under p00 +p11 < 1
we need to show that the following inequality holds true

(p11 + µ(1 − p00 − p11))eu − (1 − p00 − µ(1 − p00 − p11))eu(p00+p11)

eu + eu(p00+p11) <
eu − (1 − µ) − µe2u

2eu − e2u − 1

Note that, if p00 + p11 < 1, the denominator of LHS is positive. However, since the denom-
inator of the RHS is always negative we can rewrite the inequality as follows:

e2u(2p11 − p00 − 1 + 2µ − µ(p00 + p11)) + eu(p00+p11+1)(2p00 − p11 − 1 + 2µ − µ(p00 + p11))
+e2u(p00+p11)(1 − 2µ − p00 + µ(p00 + p11)) + e(3−p00−p11)u(1 − 2µ − p11 + µ(p00 + p11)) > 0

This implies,

2e2u(p11 − p00)(1 − ep00+p11−1) + e2u(1 − 2µ + µ(p00 + p11))(e2u(p00+p11−1) − 1)(1 − eu(1−p00−p11))
+e2u(e2u(p00+p11−1) − 1)(p11e

u(1−p00−p11) − p00) > 0

which is true if p00 + p11 < 1. Thus under obfuscation, the optimal choice of the seller would
be such that p00 + p11 ≥ 1

Step 4: p11 = 1 under obfuscation Let us prove this by contradiction. Suppose
there exists an equilibrium strategy where p11 = 1 − ϵ, where ϵ > 0 and p11 + p00 =
K > 1. Let us consider an alternate strategy of the seller such that p′

11 = 1 − ϵ/2 and
p00 = K − 1 + ϵ/2. By step 3, such a strategy would not make the no obfuscation strategy
strictly better. However, by increasing p11 and decreasing p00, the seller is strictly better off
under obfuscation, contradicting the assumption that p11. Hence, p11 < 1 can’t happen in
equilibrium.

Step 5: No obfuscation Optimal for small enough µ If p00 ≥ 1 given p11 = 1 by
condition A, then the seller would choose to not obfuscate. Let µ∗ denote the value of µ such
that p00 = 1. We can solve µ∗ by solving condition A with equality for p11 = 1 and p00 = 1.
Thus µ∗ is such that,

3e2u + µ∗e4u + (1 − µ∗) = (2µ∗ + 1)e3u + (3 − 2µ∗)eu

⇒ µ∗ = 1
eu + 1

Step 6: Solving p00 for intermediate range of µ Since p00 + p11 > 1, Condition A
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can be rewritten as,

3(p11 − (1 − p00))e2u + (µp11 − (1 − µ)(1 − p00))e2(p00+p11)u + ((1 − µ)p11 − µ(1 − p00))e2(2−p00−p11)u

+((3 − 2µ)(1 − p00) − (2µ + 1)p11)e(p00+p11+1)u − ((3 − 2µ)p11 − (2µ + 1)(1 − p00))e(3−p00−p11)u ≥ 0

Given p11 = 1 by step 4, p00 is determined by condition A at equality as follows,

3e2up00 + (µ − (1 − µ)(1 − p00))e2u(p00+1) + (1 − µ − µ(1 − p00))e2(1−p00)u+
((3 − 2µ)(1 − p00) − (2µ + 1))e(p00+2)u − (3 − 2µ − (2µ + 1)(1 − p00))e(2−p00)u = 0

We will further show that as µ decreases from 1
2 to 1

eu+1 , p00 increases from 0 to 1. Since
condition A with equality generates an implicit function of µ and p00, we use the implicit
function theorem to obtain ∂p00

∂µ
as follows,

p′
00 ≡ ∂p00

∂µ
= −(2 − p00)(e2up00 − e−2up00 − eup00 + e−up00)

I + uII

I = 3 + (1 − µ)e2up00 + µe−2up00 − (3 − 2µ)eup00 − (2µ + 1)e−up00

II = 2(µ − (1 − µ)(1 − p00))e2up00 − 2(1 − µ − µ(1 − p00))e−2up00

+ ((3 − 2µ)(1 − p00) − (2µ + 1))eup00 + (3 − 2µ − (2µ + 1)(1 − p00))e−up00

The numerator can be rewritten as,

(2 − p00)(e2up00 − e−2up00 − eup00 + e−up00) = (2 − p00)(eup00 − 1)(eup00 + e−2up00) > 0

if u > 0 and p00 ∈ [0, 1]. The first term in the denominator can be rearranged using condition
A as follows,

I = (1 − 2µ)
p00

(e2up00 − e−2up00 − 2eup00 + 2e−up00) = (1 − 2µ)
p00

((eup00 − 1)2 − (e−up00 − 1)2) > 0

The second term in the denominator can be written as,

II = (eup00 − 1)2(eup00 + 1)e−up00(e−up00(2(1 − 2µ + µp00)(eup00 − 1)) − (2 − p00)(1 − 2µ))

This would be positive if and only if

e−up00(2(1 − 2µ + µp00)(eup00 − 1)) − (2 − p00)(1 − 2µ) ≥ 0

8



This can be rearranged to,

∆ ≡ p00e
up00 − 1 − 2µ + µp00 ≥ 0 (6)

At µ = 1/2, p00 = 0, ∆ = 0 and at µ = 1/eu + 1, p00 = 1, in which case, ∆ = e2u

eu + 1 > 0.
This implies ∆ decreases from a positive value to zero as µ increases from 1/eu + 1 to 1/2.
The following inequality shows the condition under which ∂∆

∂µ
< 0.

p′
00(eup00 + up00e

up00) + 4 − 2p00 − 2µp′
00 < 0.

If p′
00 ≥ 0 for the entire range of µ, ∂∆

∂µ
≥ 0. Then since at µ = 1/eu +1 ∆ > 0, as µ increases

∆ would increase and remain positive for µ ∈ [1/eu + 1, 1/2]. But if ∆ increases II > 0 for
this entire range of µ. However, this generates a contradiction since p′

00 can only be positive
if II < 0 or ∆ < 0.

If instead ∂∆
∂µ

< 0 as µ → 1/eu + 1 but becomes zero for some µ ∈ (1/eu + 1, 1/2), then
∆ must obtain a minima below 0 for some µ′ ∈ (1/eu + 1, 1/2). At the minimum,

∂∆
∂µ

= 2 − p00(e3up00+1)(eup00 − 1)((1 + up00)eup00 − 2µ)
p00I + up00II

= 0

But at µ′, since II appears in the denominator of ∂∆
∂µ

, it should also attain its minima,
contradicting the earlier assumption. Thus for the range of µin(1/eu +1, 1/2) we find II > 0,
which implies, ∂p00

∂µ
< 0.

Since p00 = 1 at µ = 1/eu + 1 and p00 = 0 at µ = 1/2 and ∂p00
∂µ

< 0, we can conclude
p00 ∈ (0, 1) for all µ ∈ (1/eu + 1, 1/2).

The main intuition behind the proof is that under no obfuscation, the learning strategy
of B generates more precise information than under obfuscation. If the prior belief is not
in favor of S, he can improve his payoff by obfuscating. However, obfuscation cannot be so
extreme that the meaning of signals is lost. This is captured by Condition A. Together we
get an intermediate level of obfuscation. If however, learning was not an optimal choice for
the consumer even without obfuscation, we shown that no obfuscation would be optimal.
On the other hand, when the prior is favorable and S fully obfuscates he can ensure B will
choose a1 for sure, thus under favorable prior full obfuscation is optimal.

Corollary 1. The level of obfuscation is decreasing in the marginal cognitive cost λ.
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Proof. Note that, at µ∗ = 1
eu+1 , the seller chooses p00 = p11 = 1. But

∂µ∗

∂λ
= ∂µ∗

∂u

∂u

∂λ
= (− eu

eu + 1)(− u

λ2 ) > 0

Thus, as λ increases the seller can obfuscate for a smaller range of possible values of µ.

3 Examples

3.1 Misleading Information

Consider the following problem where an add-on is available along with a basic product.
Let ω1 denote the state where the add-on is not needed to consume the basic product and
ω0 where the add-on is needed. Examples include printers and ink, laptops and operating
systems, etc. Let a1 denote the action of buying the basic product and a0 denote that of
not buying. The state-dependent utility function is the same as described in the model (1).
Thus the buyer wants to buy the basic product only if the add-on is not needed. The seller
can give misleading information to the buyer in both states. Let p00 denote the probability
that the seller truthfully reveals an add-on is needed in ω0 and p11 denote the probability
that the seller truthfully reveals no add-on is needed in ω1. For the sake of simplicity let us
assume, ū

λ
= 1.

For µ = 0.4, the optimal solution given by condition A is p11 = 1 and p00 = 0.729. For
these values P (a1) = 0.43. If the seller however chooses no obfuscation,

P (a1) = µe + µ − 1
e − 1 = 0.13

Thus the seller is better off by obfuscating.

3.2 Hiding Information

In this example, we consider a two-dimensional good that the seller wants to sell. Suppose
the value of each dimension is given by H (for high) and L (for low). Let ω1 denote the good
state where the buyer is better off by buying the good and ω0 denote the state where not
buying is optimal. Let us consider the following possibilities:

• HH and state ω1 (HH) : 1/3

• LL and state ω0 (LL): 1/3

• HL and state ω1 (HL1): 1/12
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• HL and state ω0 (HL0): 1/4

Thus µ = Pr(ω1) = 5
12 < 0.5. We assume in this problem the seller can hide information

about either dimension and reveal the value (H or L) for only the other dimension. Consider
the following obfuscation strategy:

• HH: report H

• HLG: report H w.p. q

• HLB: report H w.p. q′

• LL: report L

The one-to-one relationship between q, q′ and pii is as follows,

p11 = Pr(H|HH ∪ HLG) = 4 + q

5 , p00 = Pr(L|LL ∪ HLB) = 4 + 3(1 − q′)
7

In this problem, the optimal solution is given by p11 = 1 and p00 = 2
3 . Thus, q = 1 and

4 + 3(1 − q′)
7 = 2

3 ⇒ q′ = 7
9

denote the optimal strategy. In this case, also, the seller has a higher probability of selling
by hiding information.

4 Conclusion

In this paper, we build a general model of obfuscation behavior. We find that an intermediate
level of obfuscation is optimal under unfavorable prior and full obfuscation is optimal only
under favorable prior. Moreover, we show that our framework can be used to describe
different forms of obfuscation behavior namely, misleading advertisement (example 2), direct
fraud (example 1), etc.

We have preliminary evidence for our main theoretical result (Theorem 1). Fehr and
Wu (2023) showed in an experimental market of a base good with add-on features that
sellers choose to obfuscate only when add-on features are surplus enhancing. However, the
obfuscation level diminishes significantly if add-on features are surplus neutral. However,
their setup did not capture prior beliefs directly. Moving forward we want to construct a
market experiment to directly test our results.
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