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Abstract

I analyze the impact of endogenizing social and private learning in a
herding problem. Private learning is modeled à la rational inattention
literature. I find a non-monotone relationship between social and pri-
vate learning. They are substitutes when private learning is sufficiently
cheap and become complement for higher private learning costs and
eventually become uninformative. This happens because an increase
in private learning costs makes social learning less informative. As an
implication, only the reduction of the cost of private learning unambigu-
ously increases welfare contrary to the herding result, where restricting
social learning initially is optimal.
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1 Introduction

This paper explores the role of observational learning, also known as social
learning on private learning behavior when agents have heterogenous prefer-
ences and learning is costly. Starting with Banerjee (1992) and Bikhchandani
et al. (1992) a vast literature on observational learning has explored how obser-
vational learning interacts with private information and under what conditions
it leads to complete learning, i.e., private learning does not stop as the time
horizon goes to infinity. Across various settings with homogenous (Baner-
jee (1992), Bikhchandani et al. (1992)) or heterogenous (Smith and Sørensen
(2000)) preferences, with cost of private learning ((Hendricks et al. (2012),
Mueller-Frank and Pai (2016), Ali (2018), Burguet and Vives (2000)) or cost
of observational learning (Kultti and Miettinen (2006)) there are two robust
findings. First, complete learning does not pccur except in a few special cases
since agents free ride on social information by observing other agents. Sec-
ond, as agents ignore their private information, they follow the actions of their
predecessors that leads to an inefficient equilibrium, a phenomenon knows as
herding in the literature.

Both these two finding across various settings is based on the observation
that social learning becomes a substitute for private information which al-
lows agents to free ride on social information and discard private information.
Moreover, if private learning is costly, that creates a incentive to not learn
privately, unless the cost of sufficiently low. By adding cost for observational
learning as well I want to answer two main questions. First, does the two
types of learning remain substitute for all ranges of relevant parameter or can
they become complements as well? Second, under what conditions complete
learning occurs and in absence of complete learning, does herding remain an
equilibrium when both types of learning is costly.

In this model, a short-lived agent decide the optimal level of private infor-
mation acquisition and social learning to make a decision in a binary choice
context. Agents are heterogenous in their preference type. As they enter the
economy the agents do not know their type but have a common prior over
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possible distribution of types. Based on a critical observation made by several
earlier papers (Smith and Sørensen (2000),Hendricks et al. (2012), Mueller-
Frank and Pai (2016), Burguet and Vives (2000)) that under heterogeneous
preference, social and private learning are informative about different payoff
relevant components, I assume that social learning informs the agent about
the distribution of possible types of preferences however, is silent about the
idiosyncratic preference type, whereas private learning informs the agent only
about the idiosyncratic preference type.

Existing literature have modeled the cost of private learning in three ma-
jor ways, namely, search cost (Hendricks et al. (2012), Mueller-Frank and
Pai (2016)), cost of buying precision of (normal) signals ( Burguet and Vives
(2000), Bobkova and Mass (2022)) and cost of buying experiments (Ali (2018)).
Under search cost, the models require a restrictive assumption that the agent
cannot buy a product he has not searched. Whereas in the models with cost of
purchasing precision requires a well-defined signal structure, e.g., signals fol-
lowing normal distribution. Following similar ideas I cosnider a model where
agents buy experiments directly and instead of explicitly modeling the signal
stricture I assume the cost is a function of the posterior belief disctribution
generated by the experiments. The specific cost structure is modeled following
the eentropy cost constraints in the Rational Inattention (RI) literature. For
the social learning, similar to the existing literature I assume that it takes
the form of observing actions chosen by predecessors. Furthemore, I assume
observational cost is weakly increasing and weakly convex in the number of
observations. Kultti and Miettinen (2006) assumes a linear cost of social learn-
ing, which is a special case of this model. Both types of learning being costly
is only considered in Bobkova and Mass (2022) so far. However, they do not
explicitly model the cost structure for the two types of learning and assume
that agents have a total budget for learning. This model differs significantly,
since first, there is no constraint on total budget for learning and second, since
the two types of learning happens in completely different ways, I assume very
different cost structure for each of them.

The main findings of the paper are as follows: first, I show that private
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learning and social learning are not substitutes for the entire range of relevant
parameters. More specifically, given a cost of social learning function as the
marginal cost of private learning increases, there exists athreshold value be-
yond which the two types of learning become complements. Second, contrary
to the existing literature, complete learning occurs even at non-zero cost of
private learning, moreover herding is not always an equilibrium in absence of
complete learning. Given a cost of social learning function, herding becomes
an equilibrium only for intermediate levels of marginal cost of private learning.

The standard trade-off through free riding on obsevational learning is still
present in this model, that generates the substitutatbility of two types of learn-
ing. However, the cost structure generates one additional trade-off. As the
cost of private learning increases, switching to more observation learning may
not always be optimal. This is beacuse if it harder to learn individullay (due to
higher cost of private learning), the information content of the observational
learning would also be lower. A Bayesian should consider this and choose
his learning strategy accordingly. When the second effect dominates, the two
types of learning become complements.

In contrast to the existing literature, I find a range of values for the
marginal private cost of learning parameter, where complete learning occurs.
To get completeness of learning we do not need any restrictions on the bound-
edness of signals (e.g. Smith and Sørensen (2000)), or presence of public
information (e.g., Hendricks et al. (2012)). This result also differes from Bur-
guet and Vives (2000), Mueller-Frank and Pai (2016), andAli (2018), all of
whom requires of the private learning cost to be sufficiently small. In their
models complete learning is only possible if marginal cost of learning is zero
at zero (Burguet and Vives (2000)) or if the cost of private learning goes is
not bounded away from zero Mueller-Frank and Pai (2014), or beliefs can be
changed for small enough cost Ali (2018).

In contrast, Goeree et al. (2006) considers a model with richness of private
values such that learning incentive does not go to zero unless public beliefs
are degenerate. In this model, public beliegs never become degenrate, but be-
cause of private learning can stop as it gets sufficiently costly. This finding is a

4



common feature of learning models in Rational Inattention literature. Follow-
ing Sims (2003), Matějka and McKay (2015) solve a discrete choice problem
under the assumption that paing attention or learning is cognitively costly.
They modeled the cost of learning as a linear function of the Shannon’s rela-
tive entropy between the prior and the posterior belief and showed the optimal
stochastic choice takes the form of multinomial logit. Caplin and Dean (2015)
gives axiomatic characterization for costly information acquisition problems.
Caplin et al. (2019) showed that rationally inattentive behavior implies exis-
tence of endogenous consideration sets, i.e., the agent doesn’t always choose
each possible action with positive probability even under non-degenrate belief.
Caplin et al. (2015) explored the role of exogenous social learning of market
share in a model of rational inattention. They found that observing that the
externality as found in the observational learning continues to play a role in
optimal learning strategy and leads to inefficiency. This paper is closest to
Caplin et al. (2015) except I assume both types of learning are endogenous
and costly. This allows me to explore the substitutability of complementarity
between two types of learning.

The rest of the paper is arranged as follows. Section 2 describes the two
cost structures and sets up the baseline model. In section 3, I solve the agent’s
optimization problem and find conditions for complete learning, and section 4
concludes.

2 Model

2.1 Environment

Timing: Consider an infinite horizon economy in discrete time, i.e. t ∈
{0, 1, . . . , ∞}. At each period t ≥ 0 a large but finite number of short-lived
agents, N , enter the economy choose a learning strategy, take an irreversible
action, and leave the economy never to come back again.
Action and Type: Let A = {a, b} be the set of actions. We assume that
agents have heterogenoeus preference over the actions. There are two possible
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preference type denoted by Ω = {ω1, ω2}, where ω1 ≡ a ≻ b and ω2 ≡ b ≻ a 1.
Belief: We assume that the agent does not know his preference type ωi. Let
Γ ≡ ∆ (Ω) be the set of possible distributions over Ω and ∆ (Γ) denote the
set of all possible distributions over Γ. At any period t ≥ 0 agents enter
with a common prior γ0 ∈ ∆ (Γ), i.e., a belief over possible type distributions.
The agents are thus unaware of the true data genereating process of types in
the population and the prior belief assigns probabilities to different possible
distributions. Let µ∗ denote the true distribution of types in Ω where µ∗ ∈
int (γ0)2.
Payoff : After entering, the agent can learn about his own type ωi and chooses
an alternative i ∈ A. Let u : A × Ω → R be the type dependent utility func-
tion that maps the preference type of each agent into utilities. For simplicity
consider a symmetric utility function for both types,

u (a, ω1) = u (b, ω2) = ū

u (a, ω2) = u (b, ω1) = u
(1)

where ū > u, so type ω1 gets a higher payoff from action a and type ω2 gets a
higher payoff from action b. Define ∆u = ū−u, the gain in payoff by matching
over mismatching the action and the type. Assume that agents are Bayesian
expected utility maximizers.

2.2 Costly learning

Agents can learn two ways, either by gathering information privately or by
observing choices of other agents who entered the economy before them. Since
agents are of heterogenous types, social learning is informative about the dis-
tribution of types µ ∈ Γ, and private learning is informative about one’s own
type, ω ∈ Ω.

1For sake of simplicity, we only consider strict preference rankings, since under indiffer-
ence the agent does not have any incentive to learn

2This is to ensure agents assign positive probabilities on the true distribution, thus it
would be possible for the Bayesian agents to learn about the true distribution
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2.2.1 Private learning

Signal Structure: Let S denote the set of possible signals that the agent can
observe when learning privately. Let π(s, ω) : S ×Ω → [0, 1] be an information
structure that the agent chooses. Given γ0, π(s, ω) generates a distribution of
posterior beliefs γπ ∈ ∆(Γ)3. Then for any prior belief µ ∈ Γ, the posterior
belief for any state ω given signal s by Bayes’ Law would be

Pr(ω|s) = π(s|ω)µ(ω)∑
ω′ π(s|ω′)µ(ω′) . (2)

Posterior probability of types: If two distinct signals generate the same
posterior belief then they are equally Blackwell informative (Blackwell et al.
(1953)). Since more signals are weakly more costly it is optimal to choose a
unique signal to generate any posterior belief. Hence, the posterior probability
of any type is

γπ(Pr(ω|s)) =
∑
ω

π(s|ω)µ(ω) = Pπ(s). (3)

where Pπ(s) denote the probabilit of observing signal s under the signal struc-
ture π. By Bayes Plausibility (refer Kamenica and Gentzkow (2011), Matějka
and McKay (2015) )

∑
s

P (ω|s)γπ(P (ω|s)) = µ(ω). (4)

Choosing any γ is hence equivalent to choosing an information structureπ(s|ω)
(refer Matějka and McKay (2015),)4

Posterior probability of actions: Let P
(
i, ω|µ

)
be the conditional (pos-

terior) probability of choosing action i ∈ A when type is ω ∈ Ω and prior
µ ∈ Γ and P

(
i|µ
)

≡ ∑
ω∈Ω µ (ω) P

(
i, ω|µ

)
be the unconditional (prior) proba-

bility of choosing action a ∈ A. By similar logic as before, suppose the same
3Note that since agents enter with a prior belief over ∆(Γ), we get for any µ ∈ supp(γ),

π(s, ω|µ) = π(s, ω), i.e., the signal structure is independent of the distribution µ ∈ Γ.
Moreover, this implies private learning is only informative about Ω and not Γ.

4π(s|ω) = P (ω|s)γ(P (ω|s))
µ(ω) .
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action can be chosen following two distinct posterior beliefs. Then they are
equally Blackwell informative (Blackwell et al. (1953)). Thus each posterior
would lead to the choice of unique action. Hence choosing a distribution of
the conditional probability of actions is equivalent to choosing an information
structure.

P (a, ω) =
∑
γπ

π(γ|ω)Pr(a|γ) = π(γ|ω) (5)

Cost of Private Learning: The cost of private learning is given by Shannon’s
relative entropy between the prior and the posterior probability of choice(Cover
and Thomas (2012)). The cost function is given by,

C (λ, µ) = λ


∑
ω∈Ω

µ (ω)
∑
a∈A

P
(
a, ω|µ

)
ln P

(
a, ω|µ

)
︸ ︷︷ ︸
expected entropy of the posterior distributions

−
∑
a∈A

P
(
a|µ

)
ln P

(
a|µ

)
︸ ︷︷ ︸

entropy of the prior distribution


(6)

Since P (i|µ) = ∑
ω P (i, ω|µ) we can rewrite the expression as

C (λ, µ) = λ
∑
ω∈Ω

µ(ω)
∑

a∈A

P
(
a, ω|µ

)
ln P

(
a, ω|µ

)
− P

(
a, ω|µ

)
ln P

(
a|µ

)
= λEωD(P (a|µ)||P (a, ω|µ)) (7)

where λ ∈ [0, ∞] be the marginal cost of private learning and D(p||q) denote
the relative entropy between p and q 5 . We assume λ is same for all agent
and is common knowledge.

2.2.2 Social learning

Social Learning protocol: ollowing the existing literature on observational
learning I assume that agents can only observe the action of their predecssors,

5The relative entropy between two distribution p(x) and q(x) is given by,
∑

x p(x) ln p(x)
q(x) .
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no other information, e.g., their belief or payoff can be observed. Any agent
at any period t ≥ 1 can observe the action of any agent from t − 1 genera-
tion or before subject to a cost. Once the tth generation agent decides n, he
randomly picks n agents from generation t − 1 or before and observes their
chosen actions. For simplicity we assume n is chosen before observing any
agent from any previous generation, i.e., they are observed in a block, which
means the entire data would be observed together. In the existing literature
of social learning this is common learning protocol assumed, however instead
of assuming that the agent can observe every other agents from all previous
generation we consider agents will endogenously choose to observe n many
agents due to the cost of social learning.
Cost of Social learning: FThe cost of social learning function is given by
c : {1, . . . , N} → R+ and a typical instant would be written as c(n) where
n be the number of previous generation agents that an agent in generation t

observes. The cost function has the following properties,

c (n) ∈ (0, ∞), 0 < n ≤ N,

c (n) ≤ c (n + 1) ,

c (n) − c (n + 1) ≤ c (n + 1) − c (n) , 0 ⩽ n ⩽ N − 1
c (N) > ū

(8)

i.e., c(n) is positive, finite, weakly monotone, weakly convex, and observing
everyone is never optimal. We assume that every agent in the economy faces
the same cost of social learning.
Belief : Since any agent in this economy can only choose one of two actions, a

and b, the information from social learning can be summarized by the number
of observations where an agent had chosen action a. Let xn denote the number
of action a chosen by n agents observed by the decision maker. The Bayesian
agent, given a belief γ updates her belief to γxn ∈ ∆(Γ) upon observing xn.
Here, he accounts for the possible mismatch between type and action chosen
by his predecessors.
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2.3 Benchmark Case: Only Private Learning

Let us consider the benchmark case where there is no observational information
available to the decision maker. Let µ0(ω) = Eγ0(µ(ω)) denotes the expected
probability of preference types ω given prior belief γ0. For example, if γ0

denotes a uniform distribution over [0, 1], i.e., the completely uninformation
prior then µ0 = 0.5 denote the expected probability of an agent being type ω1

(or ω2).
The optimization problem with only private learning is given by,

V (A, µ0) = max
P(i,ω|µ0)

∑
ω∈Ω

µ0 (ω) P
(
i, ω|µ0

)
u (i, ω) − C (λ, µ0) . (9)

where the first term on RHS denote the expected payoff from choosing the
optimal action and the second term refers to the cost of learning incurred.

For notational simplicity let us denote z(i, ω) = exp (u(i, ω)/λ), λ =
exp (u/λ), and λ = exp (u/λ). Following Matějka and McKay (2015), the
solution to the agent’s optimization problem would be

P
(
i, ω|µ0

)
= P

(
i|µ0

)
z (i, ω)∑

j∈A P
(
j|µ0

)
z (j, ω) ∀i ∈ A, ω ∈ Ω (10)

The Bayesian plausibility implies given their prior γ0,

∑
ω∈Ω

µ0 (ωi)
z (i, ω)∑

j∈A P
(
j|γ
)
z (j, ω) ≤ 1 ∀ i ∈ A. (11)

The inequality holds with equality if P
(
i|γ
)

> 0. Note that, P (i|γ) denote
the unconditional probability of choosing action i ∈ A given prior belief γ. If
the prior belief is high enough for one of two possible types, due to the cost of
private learning, it can be optimal for the agent to not learn and choose only
one action with probability 1. Later we will show in that case learning is not
complete.
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Using equation 11 for both a, b ∈ A we get,

P
(
a|µ0

)
=



µ0(ω1)λ̄−µ0(ω2)λ
λ̄−λ

if − ∆u/λ ≤ ln µ0(ω1)
µ0(ω2) ≤ ∆u/λ

1 if ln µ0(ω1)
µ0(ω2) > ∆u/λ

0 if ln µ0(ω1)
µ0(ω2) < −∆u/λ

(12)

Thus the posterior probability of choosing actions for different types can be
obtained by combining equation 10 and 12.

Before we solve the private learning probelm, let us consider one key prop-
erty of the relative Shannon entropy. This cost function belongs to a broader
class of cost function called the Uniform Posterior Separable (UPS) cost func-
tions. One defining characteristic of UPS cost function is Likelihood Invariant
Posterior (LIP)6. In a two action-two state symmetric payoff choice problem,
like this model, LIP implies there exists a cutoff value of belief over Ω, say µ′,
such that private learning is only optimal if µ ∈ [1 − µ′, µ′]. For any value of
µ where private learning is optimal posterior belief lies in the set {1 − µ′, µ′},
i.e., irrespective of the prior belief over Ω the posterior belief is always the
same (given the same signal realization).

Lemma 1. The private learning value function V (µ) is convex in
[

λ

λ+λ
, λ

λ+λ

]
and linear for µ ∈ [0, λ

λ+λ
) ∪ ( λ

λ+λ
, 1] as shown in figure 1. Moreover, the

learning strategy satisfies the Likelihood Invariant Property (LIP).

Proof. Let us use the notation pa = P (a|µ), then the posterior probability of
type ω upon observing signal a is given by,

γπ(iω) = P (i, ω)µ(ω)∑
P (i, ω)µ(ω) , (13)

plugging in the values of P (i, ω|µ) we get,

γπ(a, ω1) = paµλ(paλ + (1 − pa)λ)
paµλ(paλ + (1 − pa)λ) + (1 − µ)paλ(paλ + (1 − pa)λ)

6Refer Caplin et al (2019) for more details.
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µ = λ

λ+λ
µ = λ

λ+λ

V (µ)

µ = 0 µ = 1µ = 1/2

Figure 1: The value function V (µ)

Plugging in the values of pa we get,

γπ(a, ω1) = λ

λ + λ

Similarly, we can show γπ(b, ω1) = λ

λ+λ
. Thus γπ(i, ω) is independent of µ ∈ Γ

for all µ ∈ [ λ
λ+λ

, λ
λ+λ

], i.e., the learning strategy satisfies LIP.
To find the shape of the value function V (µ) we plug in the values of the
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posterior choice probabilities P (i, ω|µ) and get,

V (µ) = ū

µpaλ̄ + (1 − µ)(1 − pa)λ̄
paλ̄ + (1 − pa) λ

+ u

(1 − µ) paλ + µ(1 − p1)λ
(1 − pa) λ̄ + paλ


− λ

µ

 paλ̄

paλ̄ + (1 − pa) λ
ln paλ̄

paλ̄ + (1 − pa) λ

+ (1 − pa) λ

paλ̄ + (1 − pa) λ
ln (1 − pa) λ

paλ̄ + (1 − pa) λ


(1 − µ)

 paλ

(1 − pa) λ̄ + paλ
log paλ

(1 − pa) λ̄ + paλ

+ (1 − pa) λ̄

(1 − pa) λ̄ + paλ
ln (1 − pa) λ̄

(1 − pa) λ̄ + paλ


−pa log pa − (1 − pa) ln (1 − pa)

]
. (14)

The first two components denote the benefit (B hereafter) from private learn-
ing and the rest of the components together (C hereafter) denote the cost of
learning.

Given λ, V (µ) is continuous in µ for µ ∈ [0, 1] and continuously differen-

tiable wrt µ in the open set (0, 1) ∩
{

λ

λ+λ̄
, λ̄

λ+λ̄

}C

. Since

p(a) =


1 if λ̄

λ+λ̄
< µ ≤ 1

0 if 0 ≤ µ ≤ λ

λ̄+λ

⇒ V ′
µ =


∆u > 0 if λ̄

λ+λ̄
≤ µ < 1

−∆u < 0 if 0 < µ ≤ λ

λ̄+λ
.

The cutoffs are differentiable in λ,
d λ̄

λ̄+λ

dλ
= −

d
λ

λ̄+λ

dλ
= − (ū−u)

λ2
λ̄λ

(λ̄+λ)2 < 0

hence, λ̄
λ+λ̄

( λ

λ+λ̄
) is decreasing(increasing) in λ. In the limit when λ → ∞ the

value function V (µ) becomes piecewise linear in [0, 1] with a kink at 1/2.
In the region

(
λ

λ+λ̄
λ̄

λ+λ̄

)
, pa ∈ (0, 1). Let us rewrite V (µ) for the region

13



(
λ

λ+λ̄
λ̄

λ+λ̄

)
by putting the value of pa = µλ̄−(1−µ)λ

λ̄−λ
. Thus we get,

V (µ) = ūλ̄ + uλ

λ̄ + λ
+ λ

µλ̄ − (1 − µ)λ
λ̄ − λ

ln µλ̄ − (1 − µ)λ
λ̄ − λ

+ (1 − µ)λ̄ − µλ

λ̄ − λ
ln (1 − µ)λ̄ − µλ

λ̄ − λ

−

µλ̄2 − (1 − µ)λ̄λ

λ̄2 − λ2
ln µλ̄2 − (1 − µ)λ̄λ

λ̄2 − λ2
+ (1 − µ)λ̄λ − µλ2

λ̄2 − λ2
ln (1 − µ)λ̄λ − µλ2

λ̄2 − λ2


−

µλ̄λ − (1 − µ)λ2

λ̄2 − λ2
ln µλ̄λ − (1 − µ)λ2

λ̄2 − λ2
+ (1 − µ)λ̄2 − µλ̄λ

λ̄2 − λ2
ln (1 − µ)λ̄2 − µλ̄λ

λ̄2 − λ2




Simplifying further we get,

V (µ) = ūλ̄ + uλ

λ̄ + λ︸ ︷︷ ︸
B(µ)

+ λ

ln (λ̄ + λ) − ūλ̄

λ(λ̄ + λ)
− uλ

λ(λ̄ + λ)
+ µ ln µ + (1 − µ) ln (1 − µ)


︸ ︷︷ ︸

−C(µ)

= λ
[
ln (λ̄ + λ) + µ ln µ + (1 − µ) ln (1 − µ)

]
This implies,

V ′(µ) = λ ln µ

1 − µ


≥ 0 if µ ≥ 0.5

< 0 if µ < 0.5

Since the value function is symmetric in µ around µ = 0.5 consider only
µ ≥ 1/2 region. Since V ′(′) = 0 only for µ = 1/2 and V ′′(µ) = λ[ 1

µ
+ 1

1−µ
] > 0,

given any λ, V attains global minima at µ = 0.5.
Similarly, differentiating V (µ) w.r.t. λ we get,

V ′
λ = ln (λ̄ + λ) + µ ln µ + (1 − µ) ln (1 − µ) − ūλ̄ + uλ

λ(λ̄ + λ)

Thus V ′
λ < 0 if and only if V (µ) < B(µ), which is true for every λ > 0.
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Furthermore,

∂V ′
µ

∂λ
= ln µ

(1 − µ)


≥ 0 if µ ≥ 0.5

< 0 if µ < 0.5

Figure 1 illustrates the shape of the value function. The function is concave in
the blue region and linear outside. Moreover if the prior belief lies in the blue
region, by LIP the posterior belief about state ω1 will lie in either end points
of the blue region.

Thus under any prior belief µ we find that agents do not always learn
perfectly about their types. Let ϵa(µ) = P

(
a, ω2|µ

)
and ϵb(µ) = P

(
b, ω1|µ

)
be the corresponding mismatch probabilities when choosing a and b type ω2

and type ω1 agents respectively. Using lemma 1 we can write the mismatch
probabilities as,

ϵa(µ) = P (a, ω2|µ) = λ(µλ − (1 − µ)λ)
(1 − µ)(λ2 − λ2)

(15)

ϵb(µ) = P (b, ω1|µ) = λ((1 − µ)λ − µλ)
µ(λ2 − λ2)

(16)

Thus for all agents with the same belief µ, since the cost of learning is same
and all agents are Bayesian expected utility maximizers, they will have the
same mismatch probability. Provided µ is known, any Bayesian agent would
be know the mismatch probabilities of any agent they observe.

2.4 Social learning and Order of Beliefs

Suppose an agent i at time t observes n agents from generations t − 1 or
before, then he will update his belief over ∆ (Γ) via Bayes rule. If the agent’s
observed sample is xn, i.e. x out of n agents chose action a then the posterior
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probability of any distribution µ ∈ supp(γ0) is,

P
(
µ|γ, xn

)
= P

(
xn|µ

)
P
(
µ|γ

)∫
ν∈supp(γ) P

(
xn|ν

)
P
(
ν|γ

) (17)

and zero otherwise. Here P (µ|γ) and P (ν|γ) are given by the prior belief
of the agent, however, to calculate P (xn|µ) he needs to consider the choices
of agents in previous generation. Specifically, the agent needs to know the
posterior choice probabilities of the earlier generation. The posterior choice
probabilities depend on both the social and private learning. Given both types
of learning technologies are common knowledge, any agent in t generation can
infer how many agents have been observed by s = 1, . . . t − 1 generation but
no other information, i.e., who they observed, what was the action chosen by
these agents etc. Thus from the point of view of generation t agent any agent
from earlier generations had undertaken private learning with a prior belief
given by E(µ|γ0). Thus all agents from any previous generation is considered
as identical.

Given this prior belief let us consider the probability that any t ≥ 1 would
observe xn many action a out of n observations. Before calculating this, let
us consider a simple example where the agent observes 3 actions from earlier
generation and 2 of them are a’s. Since the private learning technology is com-
mon knowledge the period t agent can infer with what likelihood the previous
generation agents chose a when indeed they are of type ω1 and when an ω2

type agent mistakely chosen a. The following represents the various possibili-
ties of agents in previous generation mismatching their types and actions and
the corresposnding probabilities, assuming µ is the prior probability of being
type ω1.

• No Mistakes: Both agents choosing a are of type ω1 and the agent
choosing b are of type ω2

Prob = 3µ2(1 − µ)(1 − ϵb)2(1 − ϵa)

• One Mistake:
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– Only one agent choosing a is of type ω1, the other two agents are
of type ω2

Prob = 3µ(1 − µ)2(1 − ϵb)ϵa(1 − ϵa)

– All agents are of type ω1

Prob = µ3(1 − ϵb)2ϵb

• Two Mistakes:

– Only one agent choosing a is of type ω1 but the agent choosing b is
also of type ω1

Prob = 3µ2(1 − µ)(1 − ϵb)ϵaϵb

– All agents are of type ω2

Prob = (1 − µ)3ϵ2
a(1 − ϵb)

• Three Mistakes: Every agent mismatches action and type

Prob = 3µ(1 − µ)2ϵ2
aϵa

Genralizining this over any n and xn we get for any t ≥ 1 agent, the
probability of observing xn, given prior µ would be,

P
(
xn|µ

)
=

n∑
k=0

k∗∗∑
j=k∗

(
n

xn − 2j + k

)
µxn−2j+k (ϵa)j (1 − ϵb)xn−j

(1 − µ)n−xn−k+2j (ϵb)k−j (1 − ϵa)n−xn−k+j

(18)

where, k denote the total number of possible mismatches, either ω1 choosing b

or ω2 choosing a and j denote the number of ϵa type mismatch. Thus xn−2j+k

denote the number of true type a agents.
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The bounds for j are given as follows,

k∗ =


0 if k < min {xn, n − xn} or xn ≤ k < n − xn

k − n + xn if k ≥ max {xn, n − xn} or n − xn ≤ k < xn

and

k∗∗ =


k if k ≤ min {xn, n − xn} or n − xn ≤ k < xn

xn if k > max {xn, n − xn} or xn ≤ k ≤ n − xn

where both expressions consider the possibility that the total number of mis-
match can be so large, everyone who chooses a (or b) might be mismatching.
Plugging the value obtained from equation 18 into equation 17 we can cal-
culate P

(
µ|γ, xn

)
for every µ ∈ γ, and can update the belief to γxn , where

γxn ∈ ∆(Γ) denote the interim belief over Ω after observing x many agents
choosing a out of n randomly observed agents. .

2.5 Optimal Learning Protocol

All agents in period t = 0 can obly gather information privately. For any
t ≥ 1 period agent there are two different choices for learning, namely social
and private learning. By social learning the agent observes actions of previous
generations and update their belief over ∆(Ω) and by private learning they
update their beilef over own type ω ∈ Ω . The following lemma shows, that
optimal sequencing would always be of the form: first social learning then
private learning.

Lemma 2. Any agent in period t ⩾ 1 would optimally choose to learn by
observing others first followed by learning privately.

Proof. Suppose not. Consider an agent with belief γ1 ∈ Γ such that private
learning is optimal at every µ ∈ supp(γ1). WLOG, let us assume E(µ|γ1) >

0.5, in expectation the prior belief was biased towards state ω1. Let us consider
strategy 1:
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• given γ1 as the prior belief learn privately by choosing a signal structure
π1(s, ω)

• observe n agents and update belief to γ̃ ∈ Γ (n is chosen optimally)

• given γ̃ learn privately if need be

I will show the agent can be made better off by choosing an alternate strategy,
call it strategy 2:

• observe n agents and update belief to γ̃ ∈ Γ (n is chosen optimally)

• given γ̃ learn privately if need be

Since private learning is only informative about Ω, in both the two cases
the optimal choice of n would be the same. Choice of n and subsequent
observations changes belief over γ ∈ ∆(Ω) whereas π(s, ω) changes belief over
ω ∈ Ω. Upon observing n agents and changing his belief to γ̃ the agent will
adjust his belief over Ω based on the signal relatization using π1(s, ω). Let us
assume WLOG E(µ|γ̃) ≥ 0.5

Moreover, since all agents are Bayesian the sequence of learning does not
affect belief. This implies unless γ1 = γ̃, at the end of step 2 in strategy 1 the
agent’s belief would not coincide with the belief under strategy 2.

This generates two possibilities, either E(µ|γ1) > E(µ|γ̃) or E(µ|γ1) <

E(µ|γ̃) 7. If E(µ|γ1) > E(µ|γ̃), with π1(s, ω), the agent’s posterior belief
would be in ( λ

λ+λ
, λ

λ+λ
) and it will be optimal for his to learn. However, with

E(µ|γ1) < E(µ|γ̃) no further learning would be needed.
Under the second strategy of first social learning and then private learning,

in case E(µ|γ1) > E(µ|γ̃), the total cost incurred would be identical to that
of the strategy 1, since the agent would choose a signal structure π2(s, ω) such
that his updated belief about ω is

{
λ

λ+λ
, λ

λ+λ

}
. However, if E(µ|γ1) < E(µ|γ̃)

7In case of equality both strategies would be equally costly.
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then the agent only incurs

C2 = λEωD(P
(
a, ω|E(µ|γ̃)

)
||P

(
a|E(µ|γ̃)

)
)

< λEωD(P
(
a, ω|E(µ|γ1)

)
||P

(
a|E(µ|γ1)

)
) = C1.

Thus in expectation the agent can save some amount of cost of private
learning under the second strategy making it a strictly better strategy for
him. Hence, proved.

The main intuition is as follows: social learning is informative about the
distribution of types and private learning is informative about the idiosyncratic
type. Learning socially first changes the belief over the data generating process
of types or type distribution which subsequently changes the prior belief over
DM’s idiosyncratic type. Since agents are Bayesian and order of updating
doesn’t affect posterior belief, this cannot increase the cost of learning vis-
a-vis a strategy when some private learning is done before social learning.
But after some social learning is done there is a positive probability the DM
would choose to learn less privately, in that case, if the private learning was
undertaken before social learning it gives rise to a sunk cost that could have
been avoided. Thus it is weakly better to learn socially first, privately later.

2.6 Value Function

Since agents in period t = 0 does not have the option to observe other agents’
actions, their value function only consists of private learning and is given by
equation 9.

Given lemma 2, we know agents first learn socially then with the updated
belief γ′

xn
they learn privately. Following equation 10, the optimal private

learning of an agent in any period t ≥ 1 would be the same as a t = 0 agent,
except with a different interim belief over Γ. Thus for any generation t ≥ 1
agents, the value function would be,

W (A, γ) = max
n

∑
µ∈supp(γxn )

V (A, µ) γxn(µ) − c (n) (19)
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where V (.) denotes the net expected payoff following private learning and
the agent optimally chooses n to maximize the V net of the cost of social
learning. Furthermore, the agent with belief γxn chooses to learn privately
only if, −∆u/λ ≤ ln µxn (ω1)

µxn (ω2) ≤ ∆u/λ where µxn(ω) = ∑
µ∈supp(γxn ) γxn(µ)µ(ω).

For any other value of γxn , he would choose one action for sure.

3 Results

3.1 Optimal Learning Strategy

The following lemma characterizes the relationship between cost of private
learning and the informativeness of social learning. Since agents are Bayesian,
they correctly predict that as the cost of private learning goes up the observed
action of their predecessors are less likely to match their type. Thus the
updated belief post observing the same signal cannot change belief by much.

Lemma 3. As the marginal cost of private learning λ increases, the informa-
tiveness of social learning decreases.

Proof. Since the DM’s objective is to match his type with his chosen action,
the relevant statistic for him is the Eγ(µ) =

∫ 1
0 µf(µ)dµ. Let µa = Eγ(µ|a, µ0)

and µb = Eγ(µ|b, µ0) denote the updated belief after observing action a and
b respectively given prior belief µ0. We want to show |Eγ(µ|i, µ0) − µ0| is
decreasing in λ. This implies we need to show,

∂µa

∂λ
≤ 0 and ∂µb

∂λ
≥ 0 ∀λ ∈ (0, λ∗∗)

Given equation 17, we can write,

µa =
∫ 1

0

µ(1 − ϵa − ϵb) + ϵa

µ0(1 − ϵa − ϵb) + ϵa

µf(µ)dµ

µb =
∫ 1

0

(1 − ϵa) − µ(1 − ϵa − ϵb)
(1 − ϵa) − µ0(1 − ϵa − ϵb)

µf(µ)dµ
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Thus,

dµa

dλ
= −

(
∫ 1

0 µ2f(µ)dµ − µ2
0)(ϵa

dϵb

dλ
+ (1 − ϵb)dϵa

dλ
)

(µ0(1 − ϵa − ϵb) + ϵa)2 ≤ 0

⇒ ϵa
dϵb

dλ
+ (1 − ϵb)

dϵa

dλ
≥ 0

Plugging in the values of ϵi we get,

(µ0λ̄
2 − (1 − µ0)λ̄λ)

[
2(ūλ̄2 − uλ2)(µ0λ̄λ − (1 − µ0)λ2) − (λ̄2 − λ2)(µ0(ū + u)λ̄λ − 2(1 − µ0)uλ2)

]
+(µ0λ̄λ − (1 − µ0)λ2)(2(ūλ̄2 − uλ2)((1 − µ0)λ̄λ − µ0λ

2) − (λ̄2 − λ2)((1 − µ0)(ū + u)λ̄λ − 2µ0uλ2)) > 0

Simplifying we get,

(µ0λ̄ − (1 − µ0)λ)2 > 0

which would be true for all values of λ ≥ 0. Similarly for µb we find,

dµb

dλ
=

(
∫ 1

0 µ2f(µ)dµ − µ2
0)((1 − ϵa)dϵb

dλ
+ ϵb

dϵa

dλ
)

(1 − ϵa − µ0(1 − ϵa − ϵb))2 ≥ 0

⇒ (1 − ϵa)dϵb

dλ
+ ϵb

dϵa

dλ
≥ 0

Plugging in the values of ϵi we get,

((1 − µ0)λ̄2 − µ0λ̄λ)(2(ūλ̄2 − uλ2)((1 − µ0)λ̄λ − µ0λ
2) − (λ̄2 − λ2)((1 − µ0)(ū + u)λ̄λ − 2µ0uλ2))

+((1 − µ0)λ̄λ − µ0λ
2)(2(ūλ̄2 − uλ2)(µ0λ̄λ − (1 − µ0)λ2) − (λ̄2 − λ2)(µ0(ū + u)λ̄λ − 2(1 − µ0)uλ2)) > 0

Simplifying we get,

((1 − µ0)λ̄ − µ0)λ)2 > 0

which would also be true for all values of λ ≥ 0.

The following theorem characterizes the relationship between optimal pri-
vate and social learning obtained from solving the optimization problem in
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equation 19.

Theorem 1. Given the social learning cost function in 8 and the prior γ0,
there exist 0 < λ∗ < λ∗∗ < ∞, such that

1. For all λ ⩽ λ∗, the optimal level of social learning at any period t ⩾ 1 is
non-decreasing in marginal cost of private learning or social and private
learning are “substitutes”, i.e., n∗

t (λ1) ⩽ n∗
t (λ2), where λ1 ⩽ λ2.

2. For all λ ∈ [λ∗, λ∗∗], the optimal level of social learning at any period
t ⩾ 1 is non-increasing in marginal cost of private learning or social and
private learning are “complements”, i.e., n∗

t (λ1) ⩾ n∗
t (λ2).

3. For all λ > λ∗∗, not learning is optimal.

λ = ∞

λ = 0

V (µ)

µ = 0 µ = 1µ = 1/2

λ2 > λ1

λ1

Figure 2: The value function V (µ) for different λs

Before proving the theorem formally, let me discuss the main intuition
behind the proof using the shape of the interim value function following social
learning. The proof is constructed in five steps. In the first step, I show
that for a high enough private cost of learning, all forms of learning become
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uninformative since early generations make decisions based on the prior belief
alone. Thus all the following generations would choose no social learning as
well, stopping all forms of learning in the economy.

In step two, I establish the shape of the interim value function (refer to
figure 2) and show how the shape of the value function changes with the value
of λ. In the limiting case of λ = 0, the agent learns perfectly and the value
function is given by a horizontal line, and when λ → ∞ the value function
reflects no private learning which leads to choosing an action based on prior
only, where value function becomes a linear function of the interim belief µ.

In step three, I show that social learning shifts the interim belief µ of the
agent. I divide the value function over three different regions of interim belief µ

(when µ ≥ 1/2, since the other side is symmetric). Then I establish the agent
will always choose social learning such that his interim belief lies in the first
of the third region where the value function is increasing in µ. This creates a
jump in the optimal choice of social learning.

Finally, steps four and five explore the impact of different λ on the learning
strategy. The value of λ puts a bound on the maximum possible shift away
from the prior belief due to social learning. This uses the intuition that agents
are Bayesian, and they update that for high level λ observing the action of
pervious period agent does not reflect much of private learning by the previous
period agents. Thus an increase in λ has two impacts, one, it makes private
learning relatively more expensive and second, it also makes social learning
relatively uninformative, i.e., social learning cannot move the interim belief
much. When the cost of private learning is sufficiently low, the interim value
function is flatter and the effect on loss of informativeness is relatively small
since everyone in the economy already chooses a high level of private learning.
This makes the two types of learning substitute for each other for low levels
of private cost of learning. As the cost of private learning increases the sub-
stitutability component becomes relatively smaller, making the two types of
learning complementary.

Proof. Given lemma 2, we can solve the optimization problem backward. First,
for any intermediate belief µ ∈ supp (γ) the optimal private learning generate
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V (µ), then given V (µ), n∗ is chosen to maximize W (γ).

Step 1: No learning above λ∗∗ By lemma 1, private learning is not
optimal if µ ∈ [0, λ

λ+λ
) ∪ [ λ

λ+λ
, 1]. Thus social learning is not informative,

because agents choose according to their common prior. Consider λ∗∗ =
max

{
− ln µ

1−µ
/∆, ln µ

1−µ
/∆u

}
, then no learning is optimal for λ > λ∗∗.

Step 2: Interaction between private and social learning There
is a relationship between the level of precision of private and social learning.
The parameter λ, the marginal cost of private learning function indirectly
captures the level of precision in private learning. For λ → 0, the marginal
cost of private learning being too low, the DM makes almost no mistake and
can effectively match his action with state. However, for λ → ∞ the opposite
happens. To capture the level of precision in social learning, let us consider
the expression ϵa + ϵb, i.e., the total probabilty of action and state mismatch.

We can show,

∂ϵa + ϵb

∂λ
> 0

⇒ 2ū

λ
exp 2ū

λ
− 2u

λ
exp 2u

λ
>

ū + u

λ2 (exp 2ū

λ
− exp 2u

λ
)

⇒ ū + u

λ2 exp 2ū

λ
> − ū − u

λ2 exp 2u

λ

For any ū > u and λ > 0 the last inequality always holds. This implies the
higher the marginal private cost of learning the higher would be probability
of mismatch in observed action of predecessor. We claim this will create a
possible upper bound on the level of social learning given any value of λ.

To illustrate further, let us consider the extreme example, where the DM
has observed n actions all of which are action a. For the purpose of illustration
let us consider the prior belief over ∆(Ω) is uniform. Then the posterior belief
over ∆(Ω) given this observation would be,

Pr(µ|xn = n) = ((µ(1 − ϵa − ϵb) + ϵa)n)(1 − ϵa − ϵb)(n + 1)
(1 − ϵb)n+1 − ((2µ0 − 1)(1 − ϵa − ϵb) − ϵa)n+1
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This implies the expected value would be,

E(µ|xn = n) = (1 − ϵa − ϵb)n+1(n + 1)
(1 − ϵb)n+1 − ((2µ0 − 1)(1 − ϵa − ϵb) − ϵa)n+1

n∑
k=0

(
n

k

)
( ϵa

1 − ϵa − ϵb

)n−k 1 − (2µ0 − 1)k+2

k + 2

If ū > u, then we get E(µ|xn = n) decreases with λ. Note that, under
social learning protocol described here, E(µ|xn=n) becomes the interim belief
of the DM over Ω at the time of private learning. Thus a decrease in this value
would lead to a less precise prior for the DM while undertaking the private
learning.

The main point discussed in the above example carries through in other
cases as long as ϵa + ϵb increases in λ. Given the shape of the value function
V (µ), this creates a negative relationship between the cost of private learning
and the benefit obtained from social learning.

Step 3: Substitute and Complement To explore the substituatibility
of complementarity of the private and social learning, let us first explain the
role of change in λ on decision making. WLOG let us consider µ0 ≥ 0.5, the
analysis would be symmetric for µ0 < 0.5. In step 1, we have established that
V ′

λ < 0 for all λ > 0. Furthermore,

∂2V

∂λ2 = (λ̄ + λ)(ū2λ̄ + u2λ) + (ūλ̄ + uλ)(λ(λ̄ + λ) − ūλ̄ − uλ)
λ3(λ̄ + λ)2

− ūλ̄ + uλ

λ2(λ̄ + λ)
> 0

⇔ λ̄λ(ū − u)2 > 0

Thus V ′
λλ > 0 for all λ > 0. This implies the fall in V (λ) lowers as λ increases.

The decrease in V (λ) due to an increase in λ can be compensated by an
increase in intermediate belief µ(WLOG we have assumed µ0 ≥ 0.5). This is
because,

V ′
µ = λ ln µ

1 − µ
≥ 0
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for the range of µ ≥ 0. Also, V ′
µλ = ln µ

1−µ
> 0 for the relevant range. Note

that this is increasing in µ. Thus if social learning can change the intermediate
belief significantly, it will increase the net benefit from private learning.

Before private learning is undertaken the DM can change intermediate
belief by social learning. In step 3 we have shown E(µ|xn = n) increases in n.
Furthermore E(µ|xn=n)λ,n < 0, i.e., as λ increases the change in intermediate
belief due an increase in n when xn = n is smaller. This is true for observation
of xn that strengthens the evidence for either state. However, for the value of
xn that weakens evidence against both, i.e., make the intermediate belief more
diffused that is necessarily not the case. As a result in expectation EnV (µ)
increases more with an increase in n for lower values of λ.

Combining the three effects together we can conclude as λ increases from
0, there is a sharp decline in net value from private learning V (µ), whereas
given λ sufficiently small, the same change in n can increase E(µ|xn) more
significantly. Furthermore, for any given level of n if social learning changes
by ∆n,

lim
λ→0

∆EV (µ)
∆n

→ ∞

Moreover, since V ′(λλ) > 0, as λ increases the loss in net value of private
learning is lower. Also, a higher λ implies E(µ|xn) cannot change much, thus
restricting the benefit from social learning. Given step 1, as λ → λ∗∗, the cost
of increase in social learning would start to dominate the gain. In the extreme
case, for any given n and change of social learning ∆n

lim
λ→λ∗∗

∆EV (µ)
∆n

→ 0

Since c(n) ∈ (0, ∞) and V (µ) is continuously differentiable in λ and V ′
λ < 0,

by intermediate value theorem, for any n there exists a λ∗(n) ∈ (0, λ∗∗) such
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that

∆W (λ, n)
∆n


= 0 for λ = λ∗(n)

> 0 for λ < λ∗(n)

< 0 for λ > λ∗(n)

This implies as λ increases from 0, the optimal level of social learning would
be non-decreasing. As n increases (or remains the same), a further increase
in λ would reduce the benefit from social learning. Moreover, given c(n) is
weakly monotone and weakly convex in n, λ∗(n) would be decreasing in n.
Thus there exists a λ∗ < λ∗∗ for some n, beyond which an increase in n with
an increase in λ would not be profitable and n would be non-increasing in λ

for all λ > λ∗.
This implies the two types of learning would be substitutes for λ < λ∗ and

complements for λ > λ∗. This proves part 1 and 2 of the theorem.

3.2 Herding

In previous literature (e.g., Banerjee 1992) agents were choosing action sequen-
tially and later agents could observe actions of all the previous agents. In this
case, herding was defined as an equilibrium where agents ignore their private
signal and choose an action a if all previous agents have chosen action a. In
our framework also agents enter sequentially and can observe the action choice
of previous agents. However, in each generation there are multiple agents and
future generations typically observe only a fraction of them, subject to cost
of social learning. For the purpose of comparison we modify the notion of
herding in our model.

Definition 1. An equilibrium in this economy is considered is considered a
Herding equilibrium if after all t = 0 agents choose the same action ai, every
agent from all future generations t ≥ 1 would choose action ai following social
learning with n∗ > 0 and no further private learning will be undertaken.

Since the if condition involves all t = 0 agents choose the same action, it
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would be easiest for herding to take place. Since all agents in t = 1 will observe
action ai is being chosen. As discussed earlier this will move the interim belief
to the furthest.

Theorem 2. Given the social learning cost function c(n) is sufficiently small,
∃λH , λH such that herding would be an equilibrium if and only if λ ∈ [λH , λH ].
Moreover, λH ∈ (0, λH ] and λH ∈ [λ∗, λ∗∗).

Proof. We will prove this theorem in two steps. In the first step we will show
for any parameter values, a necessary and sufficient condition for herding is
given by µn ≡ E(µ|xn = n) ∈ R2. The second step will find conditions on λ

such that µn∗(λ) ∈ R2.
Step 1: WLOG let us assume all agents in t = 0 choose action a. This

would imply for any agent in t = 1 generation the observation due to social
learning would be given by xn∗(λ)=n∗ , where n∗ denote the optimal level of
n chosen for any given λ. If all these agents also choose according to the
social learning observation, namely action a then for all agents in period t

at optimal n∗(λ) the observation would also be given by xn∗(λ) = n∗. Using
similar logic, for every generation the optimal choice of social learning would
generate xn∗(λ) = n∗.

Given this observation let us consider the expected posterior belief after
observing xn∗(λ) = n∗, which we will denote as µn (slightly abusing the nota-
tion). Let us consider a set of parameters such that µn ∈ R2. By definition
µn ≥ λ

λ+λ
. Since pa = 1 in this case, the agent will optimally decide not to

undertake any private learning and choose action a.
Now let us consider a set of parameters where µn ∈ R1. In this region

it is optimal for agents in period 1 to undertake private learning. Since for
any λ ∈ (0, ∞), ϵb > 0 for µn ∈ R1 with positive probability some agents will
choose b in period t = 1. This would imply for any agent in t = 2 the expected
posterior belief would also remain in region 1, triggering private learning. By
similar logic, with strictly positive probability there will always be some agents
in any generation t ≥ 1 who will choose action b. Thus µn ∈ R2 is a necessary
and sufficient condition for herding.
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Step 2: To find the range of λ given social cost function c(n) let us write
the condition µn ∈ R2 in terms of model parameters.

(1 − ϵa − ϵb)n+1(n + 1)
(1 − ϵb)n+1 − ((2µ0 − 1)(1 − ϵa − ϵb) − ϵa)n+1

n∑
k=0

(
n

k

)
( ϵa

1 − ϵa − ϵb
)n−k 1 − (2µ0 − 1)k+2

k + 2 ≥ λ

λ + λ

The shape of the RHS of the inequality is given as follows,

∂ λ
λ+λ

∂λ
= − λλ(u − u)

λ2(λ + λ)2 < 0

i.e., RHS in decresasing in λ. Moreover,

∂2 λ
λ+λ

∂λ2 = λλ(u − u)((u + u)(λ + λ)) − 2(λu + λu − λ(λ + λ))
λ4(λ + λ)3

The sign of the above expression is given by,

∂2 λ
λ+λ

∂λ2 ≤ 0

⇒ (u + u + 2λ)(λ + λ) ≤ 2(λu + λu)

which happens for sufficiently small λ given u and u. This implies the RHS
takes an inverted S-shape and is downward sloping everywhere.

Similarly we can consider the shape of LHS as well. As mentioned in step
3 of the proof of theorem 1 the LHs isdecrasing in λ. Furthermore, LHS also
assumes inverted S-shape where the curvature depends on n. For amy feasible
n, as λ → 0, LHS < RHS. Also, at λ = λ∗∗, since ϵa = 1 and ϵb = 0,

P (µ|xn = n) = P (xn = n|µ)f(µ)∫ 1
0 P (xn = n)|ν)f(ν)dν

= (µ(1 − ϵb) + (1 − µ)ϵa)nf(µ)∫ 1
0 (ν(1 − ϵb) + (1 − ν)ϵa)nf(ν)dν

= f(µ)∫ 1
0 f(ν)dν

= f(µ)
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Thus,

LHS = E(µ|xn = n) = µ0 = λ

λ + λ
= RHS.

This implies LHS intersects RHS at least once in the relevant range of λ for
any n. However, as n increases, the LHS curve shifts upward, while the RHS

is independent of n. Furthemore, LHS is flatter than RHS and becomes
steeper with an increase in n. This implies there exists an n̄, such that for all
n ≥ n̄, LHS intersects RHS twice, first from below at a value lower than λ∗∗

and then from above at λ∗∗. For all n < n̄ LHS intersects RHS only once at
λ∗∗, from below.

We would consider the cost of learning function c(n) to be not sufficiently
small if for every λ ∈ (0, λ∗∗), the optimal choice n∗(λ) < n̄, i.e., LHS < RHS

for all relevant values of λ. For the rest of the proof let us consider a social
learning cost function where there exists a n∗(λ) ≥ n̄ for some λ ∈ (0, λ∗∗).

Given n∗(λ) ≥ n̄ for some λ, let us define λH as the minimum value of λ

such that LHS ≥ RHS. Similarly let define λH as the maximum value of λ

such that LHS ≥ RHS.
Suppose λH = λ1 < λ∗, then an increase in λ would weakly increase

the optimal n∗. Since LHS shifts up with n and intersects the RHS twice
before λ∗∗, there would exist λ2 > λ1 such that LHS ≥ RHS at λ2, thereby
contradicting λ1 being the highest such value of λ. At λ∗∗ the optimal choice
of n∗(λ∗∗) = 0. In this case, the LHS becomes a straight line intersecting
RHS at λ∗∗, thus λH ∈ [λ∗, λ∗∗).

Let us consider any λ ∈ [λH , λ∗]. In this range the two type of learning are
substitutes, i.e., as λ increases n∗(λ) also increases weakly. Hence, if at λH ,
LHS ≥ RHS, for a higher λ with a weakly higher n∗ LHS ≥ RHS would
remain true.

For any λ ∈ [λ∗, λH ], the two types of learning are complements, i.e., if λ

decreases n∗(λ) weakly increases. Thus if LHS > RHS at λH , it would also
be true for any λ ∈ [λ∗, λH ]. Thus for any λ ∈ [λH , λH ] herding would be an
equilibrium.
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Theorem 2 shows that herding would be an equilibrium even when the two
types of learning are complements, since λH ∈ [λ∗, λ∗∗). This has important
policy implications.

Consider the policy where the first few generations are not allowed to learn
socially. This is a welfare-improving policy in the herding literature since this
encourage using own private signal, which in turn increases the probability of
choosing the correct action over time.

But given 2 since herding can be optimal when the two types of learning
are complements, reducing social learning would reduce the level of private
learning and can reduce the net expected payoff of the agent. Thus this is not
unambiguously a welfare-improving policy.

Corollary 1. Herding is more likely for a less precise prior belief, i.e., when
µ0 is closer to 0.5.

Proof. As µ increases LHS becomes flatter and also

∂λ∗∗

∂µ0
= − (u − u)

µ0 ln ( µ0
1−µ0

) < 0.

This implies as µ0 increases for a given set of parameters u and u and any
value of n, a smaller range of λ makes LHS ≥ RHS, i.e., µn ∈ R2. Thus by
theorem 2, for a larger µ0 herding is possible for a smaller range of λ, making
is less likely.

Note that it is not obvious a priori that with an increase in µ0, herding
would be less likely, since a higher µ0 on one hand reduces the probability
of any learning by reducing λ∗∗ but, makes the private learning cheaper at
any λ thereby decreasing the dependence on social learning. However, since
individual agents are learning more under higher µ0 in period t = 0, herding
becomes less harmful in terms of payoff loss for future generation.

3.3 Discussion of Assumptions

One of the most crucial assumptions of the paper is the private learning tech-
nology. The assumption of Shannon mutual entropy simplifies the structure
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of the optimization problem and allows me to describe the optimal learning
strategy, however, this simplification preserves several important features of
any private learning technology. First, the mutual entropy cost function be-
longs to a larger class of cost functions, namely, Posterior Separable (PS) (refer
Caplin et al. (2022)) which allows the cost of learning to be dependent on the
posterior only. Thus we do not need to specify the form of information struc-
ture that generates the posterior. Second, the cost function allows the cost to
be increasing in precision without any distributional assumption on the prior
or signal structure. Third, the cost of the learning strategy depends on the
prior. This captures the notion that with a sufficiently confident prior the
cost of learning becomes relatively more expensive for further learning which
makes it easier for a herding equilibrium to exist. Assuming other learning
technologies can make the problem intractable or uninteresting.

For simplification, I have made several other assumptions about learning
protocols. Assuming the payoff only depends on idiosyncratic states implies
social learning is only informative about the distribution of types. The as-
sumptions of the homogeneous private and social cost of learning allow the
agents in a later generation to update their information upon social learning
from previous generations. Also, for social learning, we assumed the protocol
of block learning where n is chosen before any observation. This assumption
generates lemma 1. In the appendix, we relax all these assumptions. We con-
sider four extensions, namely, aggregate state affecting payoff, heterogenous
cost of private and social learning, and sequential learning protocol. Under
suitable adjustments, all these extensions preserve the main result of the paper.

4 Conclusion

To conclude, this paper solves a model of individual stochastic choice where
agents are rationally inattentive and face a costly social learning mechanism.
The optimal choice of social learning is non-monotonic in the marginal cost of
private learning. Herding can only happen for an intermediate level of private
cost of learning where the two types of learning are complements. Restricting
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access to social learning in early periods does not necessarily improve welfare.
In case the two types of learning are complements of each other, restricting
access to social learning can increase the probability of mismatching actions
to types since the optimal level of private learning also decreases. The only
unambiguously welfare-improving policy is to lower the marginal cost of private
learning.

In addition to the context of college major choice, this model can be ap-
plied to various discrete choice problems related to life-cycle decisions, e.g.,
choosing an appropriate career, deciding whether to get a college education or
not, deciding whether to join labor force participation or not. Given the signif-
icance of these decisions on lifetime income and wealth accumulation and the
significant role of social learning in all of them, appropriate policy measures
can affect the quality of decision making of individual agents.
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A Extensions

A.1 Aggregate State

In this section we consider an aggregate state space along with the idiosyn-
cratic state space. Let S denote finite aggregate state space. Without loss of
generality let S = {h, l} with the notion that h be the high state and l be the
low state of the economy. The state dependent utility function for s = h, l is
given by

ūs = u (a, ω1, s) > u (b, ω1, s) = us

ūs = u (b, ω2, s) > u (a, ω2, s) = us

This implies the order of preference for both type of agents namely ω1 and
ω2 remains the same and symmetric as before but magnitude of the difference
depends on the aggregate state.

Let PS denote the true transition probability matrix of the aggregate state
space S, where PS is common knowledge but an agent in period t > 0 doesn’t
know the realized aggregate state in period t − 1. Every agent in period t > 0
enters with a common belief π0 ∈ Π ≡ ∆ (S) about the last period aggregate
state and for t = 0 agents, let π0 ∈ Π be the common prior belief about
aggregate state in period t = 0 where π0 is more informative than π0 in the
sense for different aggregate states in period t = 0 nature chooses a π0 closer
to the truth than π0 for any aggregate state s. Everyone knows π0 but the
realized value of π0 is only observed by t = 0 agents.

Apart from the learning channel for the idiosyncratic state the agents can
also choose to learn about the aggregate state. We assume that agents don’t
learn about aggregate state via private learning, hence the only way to learn
about the aggregate state is via social learning which gives information about
the aggregate state in period t−1 and using PS belief about period t is formed.
We further assume that the aggregate state S is independent of distribution
of idiosyncratic state, which simplifies the analysis of belief formation.

Note that the aggregate state is not a “true” static feature of the economy,
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rather a dynamically changing state. This also includes the usual “true” state
notion of aggregate state if PS is an identity matrix (I2×2) and nature chooses
a state at t = 0 with some probability distribution πnature ∈ ∆ (S) at the
beginning of period t = 0. The common belief π0(or π0 for t = 0) may or may
not be same as πnature and the dynamics of evolution of belief based on social
learning from earlier generation can be analyzed.

A.1.1 Belief Formation

By assumption the aggregate state is independent of the distribution of the
idiosyncratic state, so the idiosyncratic type of a person is not informative of
the aggregate state hence lemma ?? still holds .

Since the agent doesn’t learn about aggregate state privately, the belief
about the aggregate state before private learning would not be updated in the
process of private learning. Let πxn ∈ Π be the belief about the aggregate
state prior to private learning if he observes xn many a’s out of n observations
from t − 1 generation. Then the expected utility from choosing action i would
be given by

uπxn
(i, ω) = u (i, ω, g) Pr

(
g|πxn

)
+ u (i, ω, b) Pr

(
b|πxn

)
(20)

Hence, posterior probability of choosing action i after private learning
would still be given by 10 where the u (i, ω) would be as replaced by uπxn

(i, ω)
as defined in equation 20. So the analysis regarding private learning won’t
change.

Upon observing n agents, an agent in period t > 0 would update his belief
about both the aggregate state in period t − 1 and the distribution of types
in the economy. For t = 1 the error probabilities remain the same except it
would be aggregate state dependent, namely ϵi,s

0 , then for i = a, j = 2 and
i = b, j = 1 and s = {g, b} we have,

ϵi,s
0 = P

(
i, ωj|µ, π = Pr {s} = 1

)
(21)

For any generation t > 1 the error probabilities are again the expected error

38



probabilities given n and it also uses the same conditioning on the aggregate
state as in equation 21. Thus the probability of observing xn for s = h, l would
be given by

P
(
xn|µ, s

)
=

n∑
k=0

k∗∗∑
j=k∗

(
n

xn − 2j + k

)
µxn−2j+k

(
ϵa,s

t

)j (
1 − ϵb,s

t

)xn−j

(1 − µ)n−xn−k+2j
(
ϵb,s

t

)k−j (
1 − ϵa,s

t

)n−xn−k+j

(22)

where the error probabilities uses similar conditioning as in equation 21
for any t ≥ 1, otherwise same as before. Then using independence a Bayesian
agent would update his belief as follows,

P
(
µ, s|γ, π0, xn

)
= P

(
xn|µ, s

)
P
(
µ|γ

)
P
(
s|π0

)∫
ν∈γ
s∈S

P
(
xn|ν

)
P
(
ν|γ

)
P
(
s|π0

) , for s = h, l, µ ∈ γ (23)

Hence, the belief about the aggregate state of period t − 1 would be,

P
(
s|γ, π0, xn

)
=
∫

µ∈γ
P
(
µ, s|γ, π0, xn

)
(24)

Then using the transition probability matrix, Ps the agent would form πxn ,
the belief about the aggregate state in period t. Given that the agent would
learn privately and choose an action to maximize ex-ante expected utility.

A.1.2 Agent’s Optimization

Given the belief πxn we can construct uπxn
(i, ω) using equation 20, then the

V (µ) remains same as before except the state-dependent utilities are expected
utilities over aggregate state. Since V function remains the same all the anal-
ysis about the shape of V still holds. The only difference being, when agents
choose n then, it generates a distribution of beliefs over π, aggregate state for
all possible xn and a change in π would generate a different expected utility
and hence a different level of V . So by choosing n agents not only move along
V but also V is shifted.
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Thus the optimization problem becomes,

W S (A, γ) = max
n

Eγ′
xn

[
Eπxn

(
V
(
A, γ′

xn

))]
− c (n) (25)

which is same as 19 except the V
(
A, γ′

xn

)
is replaced by the expected V

(
A, γ′

xn

)
,

where the expectation is over πxn , the posterior probability distribution of ag-
gregate states after observing xn. With this modification the qualitative results
of initial non-decreasing, followed by non-increasing along with a jump in the
non-decreasing part level of social learning for different levels of λ i.e λ∗ and
λj hold true, but the cutoffs would be determined differently. For determining
λj, we would use the expected value function given any n as in equation 25
and the rest of the argument goes through since V has similar shape at all
possible level of π. Also, the limλ→0 V ′

µ → 0, hence λ∗ ≥ 0 also exists.
The more surprising result is given in the following proposition,

Proposition 1. If γ (ωi) ̸= 1/2, there exists a λ∗∗ < ∞, such that for all
λ > λ∗∗, the optimal social learning at period t ≥ 1 is zero.

Proof. The proof uses the similar idea of part 4 of theorem 1. Let’s start
by showing for any other γ, π0, there exists λ∗∗ such that for all λ > λ∗∗,
P
(
a|γ

)
= 1(or 0). Now the prior probability of choosing action a for an agent

in t = 0 is given by,

P
(
a|γ, π0

)
=



γ(ω1)e
uπ0 (a,ω1)

λ −(1−γ(ω1))e
uπ0 (b,ω1)

λ

e
u

π0 (a,ω1)
λ −e

uπ0 (b,ω1)
λ

if γ(ω1)
1−γ(ω1) ∈ [e−∆π0 u

λ , e
∆π0 u

λ ]

1 if γ(ω1)
1−γ(ω1) > e∆π0 u/λ

0 if γ(ω1)
1−γ(ω1) < e−∆π0 u/λ

(26)
Hence, for log γ′(ω1)

1−γ′(ω1) > ∆π0u/λ or log γ′(ω1)
1−γ′(ω1) < −∆π0u/λ, i.e if

λ > ∆π0u/ log γ′ (ω1)
1 − γ′ (ω1)

or λ > ∆π0u/ log 1 − γ′ (ω1)
γ′ (ω1)
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the optimal level of private learning by agent in period t = 0 is zero. Now
define

λ∗∗ = max
{

max
π0∈Π0

∆π0u/ log γ′ (ω1)
1 − γ′ (ω1)

, max
π0∈Π0

∆π0u/ log 1 − γ′ (ω1)
γ′ (ω1)

}

8 given µ, then for all λ > λ∗∗, agents in period t = 0 don’t learn privately. If
∆π0u is finite for all π0 ∈ Π0 then by assuming µ ̸= 1/2, we ensure λ∗∗ < ∞.

Since Π0 is common knowledge, period t = 1 agent knows that for λ >

λ∗∗, the t = 0 would always choose action a(or b), hence social learning is
completely uninformative about both aggregate and idiosyncratic state. So it
is optimal to choose n∗ = 0 for t = 1 generation agents.

Thus, we can conclude that if it is optimal for t = 1 agents to not learn
socially then it is optimal for any t > 1 agents to not learn socially either.
Hence, proved.

The result is counter-intuitive because even after introducing a payoff rel-
evant aggregate state which can only be learned by social learning, there still
exists a level λ such that for any higher marginal cost of private learning an
agent optimally chooses zero social learning. The intuition behind the result
is that a high level of λ makes an agent stick with their prior and no learning
at all. Hence, any behavior becomes completely uninformative for the next
generation which makes zero social learning optimal.

A.2 Heterogeneous Cost of Private learning

To the baseline model of section 2 now we add heterogeneity in the marginal
cost of private learning. Everything else is the same let λ ∼ F (λ), instead of
λ is constant for all agents in the economy, for all t ⩾ 0, where the distribution
F is common knowledge but while observing the action of an agent in period
t−1, a t period agent can’t infer the corresponding λ. We further assume that
F in independent of type distribution.

8Since utility is bounded and γ (ωi) ̸= 1/2 the maximum always exists.
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Given µ, period t = 1 agent knows that different λs in period t = 0 would
choose different levels of private learning. Let ϵi

λ denote the error probability
of a t = 0 agent when the cost of private learning is λ, given λ ∈ supp (F ).
Then define the expected error probability after observing any agent taking
action i from generation t = 0 as

ϵi
0,F =

∫
λ∈F

ϵi
λdF (27)

If the earlier error probabilities are replaced by ϵi
0,F as defined in 27, the

optimization problem for the agent in t = 1 remains the same as before. Hence,
the optimal solution to the problem would be same as before for any λ ∈ F .

The problem for t > 1 generation would be different since, the optimal level
of n∗ is different for different λ. The generation t = 2 agent would know the
optimal n∗

λ for each λ ∈ F and hence the error probability would be different
from the baseline model. Let Xn∗

λ
denote all possible sample distribution for

sample size n∗
λ. Let the error probabilities be ϵa

xn∗
λ

,λ,t = P
(
a, ω2|γ, xn∗

λ
, t, λ

)
and ϵb

xn∗
λ

,λ,t = P
(
b, ω1|γ, xn∗

λ
, λ, t

)
after observing xn∗

λ
∈ Xn∗

λ
in period t by

an agent with marginal cost of private learning being λ ∈ F . Using the
prior γ the distribution over Xn∗

λ
can be obtained for each λ ∈ F and let γ

generates an implied distribution fa
γ and f b

γ over ϵa
xn∗

λ
,λ,t and ϵb

xn∗
λ

,λ,t respectively.
Using independence between γ and F let us define ϵa

t,F and ϵb
t,F as ϵi

t,F =∫
λ∈F

∫
xn∗

λ
∈Xn∗

λ

ϵi
xn∗

λ
,λ,tdf

i
γdF as the expected error probability by choosing i in

period t − 1 after observing n∗
λ many agents from generation t − 2 when the

marginal cost of private learning is λ ∈ F . Given ϵi
t,F at any period t > 2 the

error probabilities can be generated recursively.
The new error probabilities are the expected error probabilities over F . For

each λ ∈ F we calculate the expected error probability and then take expec-
tation over the expected probability wrt F , to get the new error probabilities.
Since F is common knowledge, the path of n∗

λ,t is also common knowledge for
each λ and for each generation t by the recursive nature of the problem. Thus
for t > 2 the error probabilities are well defined. Hence, given these new error
probabilities, the optimization problem for any λ is the same as before.
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To state a similar result as that of theorem 1 we first need to define an
ordering over all possible F (.). Let us consider the FOSD over the distribution
of λ. Given any cost of social learning function c (n), F1 would generate the
lower error probability than F2 if F2 FOSD F1. This is true because the
error probabilities are obtained by taking an expectation over different error
probabilities for different λ and a higher λ always give higher error probability.
If we replace the statement of Theorem 1 with F , in place of λ along with
FOSD all the results still hold.

A.3 Heterogeneous Cost of Social Learning

If instead of having different λs, the agents have different social cost functions
cα ∼ G where cα belongs to the set of all functions satisfying the conditions
given in 8. In this case, the problem would not be very different when G is
common knowledge and is also independent of the distribution of types. In
that case, the period t = 0 agents are still identical since they don’t learn
socially. So, ϵi

0 would not change. For agents in t ⩾ 1 the heterogeneity would
be relevant if n∗ > 0 for some cost types. Otherwise, it would be the same as
the baseline model. So the only interesting case is when n∗

t > 0 for some t and
some α, where the generation t agents would have different error probabilities.

Consider the case when n∗
t > 0 for a positive measure set of cost types at

some period t > 0, i.e. an agent with cost function cα chooses n∗
α ⩾ 0 (with

strict inequality for a positive measure αs). Let Xn∗
α

denote all possible sample
distributions for sample size n∗

α, then the error probabilities would be given by
ϵa

xn∗
α

,t = P
(
a, ω2|γ, xn∗

α
, t
)

and ϵb
xn∗

α
,t = P

(
b, ω1|γ, xn∗

α
, t
)
. Using independence

between γ and G let us define ϵa
t and ϵb

t as ϵi
t =

∫
Cα∈G

∫
xn∗

α
∈Xn∗

α
ϵi

xn∗
α

,tdf
i
γdG

as the expected probability of making mistake by choosing i in period t − 1
after observing n∗

α many agents from generation t − 2 when the cost of social
learning is cα ∈ G. Using this new error probabilities the problem remains the
same and hence all the results still hold true.
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A.4 Sequential Learning

Throughout the paper, we assumed that agents are using block learning. But in
this section, we consider the case of sequential social learning. As we discussed
earlier under sequential learning agents choose a stopping strategy conditional
on belief and number of observations instead of choosing only one value of
n, hence we cannot rewrite similar statements to that of Theorem 1 for the
sequential learning case.

To prove a similar result as that of theorem 1 we need to consider the entire
support of the stopping strategy which gives a nonempty set of values of n.
Let us define that set of optimal values of n at period t > 0 to be Nt. Let nt

min

denotes the minimum value of n in the set Nt. Under the sequential strategy,
we can write a similar proposition as that of theorem 1.

Proposition 2. Under sequential social learning , there exist a set of cutoff
values of λ, namely, 0 ⩽ λ∗

s ≤ λi
s < λd

s ≤ λj
s < λ∗∗ ⩽ ∞, such that

1. For all λ ⩽ λ∗
s, the minimum level of social learning at any period t ⩾ 1

in the optimal set Nt is such that nt
min (λ1) ⩽ nt

min (λ2), where λ1 ⩽ λ2,
i.e. nmin is non-decreasing in marginal cost of private learning.

2. For all λ ∈
[
λi

s, λd
s

)
, the minimum level of optimal social learning at

any period t ⩾ 1 is such that, nt
min (λ1) ⩾ nt

min (λ2) where λ1 ⩽ λ2 and
λ1, λ2 ∈

[
λi

s, λd
s

)
,i.e., nt

min is non-decreasing in marginal cost of private
learning.

3. For any t ⩾ 1, limλj− nt
min (λ) < limλj+ nt

min (λ), i.e. the minimum
optimal level of social learning nt

min takes an upward jump at λj
s.

4. For all λ > λ∗∗
s , the optimal social learning set is singleton, specifically

Nt = {0} at any period t ⩾ 1,i.e. the social learning becomes completely
uninformative.

Proof. As we have already discussed, under sequential learning agents choose
a set of n conditional on belief in equilibrium. First, we discuss the position
of the nmin in terms of beliefs in equilibrium for different values of λ. Then
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we use ideas from proof of theorem 1 to complete this proof. For the rest of
the proof, we would only consider the value function V (µ) for µ ≥ 1/2 as
the other case would be symmetric. So a higher belief, i.e., a higher value of
µ would mean a belief further away from the uniform belief which is a more
informative belief as well.

Step 1: In this step we discuss the position of nmin for different values of
λ.For notational simplicity, we drop the time superscript. We know the value
function V (µ) is C2 in the domain

(
λ/λ̄ + λ, λ̄/λ̄ + λ

)
and attains an interior

minimum at µ = 1/2 and an interior local maximum at µmax. This implies the
function is locally concave near µmax and locally convex near 1/2. If nmin is at
some level of belief µ1, which means an agent would optimally choose to top
learning socially after observing n many actions when his belief is µ1, then at
µ1 the marginal gain from observing one more action would be least among all
choices of n. This is true because the cost function is weakly convex implies
a higher n generates a higher increase in marginal cost. Since an agent would
only choose to stop learn if the marginal gain is less than marginal loss, where
the loss is due to extra cost, then nmin has to be associated with the lowest
marginal gain. This gives us a natural candidate for nmin which is closest to
the µmax as the function attains local maxima at that point and hence would
be flattest there.

But as we noted earlier in the proof of theorem 1 the cost of social learning
function puts a restriction on how much an agent can learn by imposing a
maximum value of n, namely n̄.Let us consider only those λs for which the
maximum possible belief at n̄ remains below µmax. For a small enough λ in
that range the n̄ restricts the belief away from µmax to a lower value. This
means nmin may not be associated with the belief closest to µmax. For any such
λ, the marginal gain is thus lowest for a choice of n that keeps the belief closest
to 1/2 due to the locally convex nature of the value function near µ = 1/2.

But for a high, enough λ when n̄ is such that there is a choice of n where
the belief is very close to the µmax then that n would generate lowest marginal
gain and become the nmin. For an intermediate value of λ the smallest µ would
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generate nmin if the marginal gain is lower at the smallest µ compared to the
µ closest to µmax.

Now consider the case where λ is such that the maximum possible belief
lies in

(
µmax, λ̄/λ̄ + λ

)
. This implies that for all such λ as the agent can have

a belief in the decreasing part of the value function V (µ). But unlike the
case of block learning an agent might choose an n such that he optimally ends
up with a belief in the decreasing part. The reason behind this is as follows:
under sequential learning, an agent decides whether to observe another action
standing at some belief and n combination so if the agent has a belief not
very close to µmax but such that observing one action would lead him to the
decreasing part where the expected marginal gain is higher than the marginal
loss then he would choose to observe one more n and would probably end at
a belief in the decreasing part.

But again there is a cutoff belief lower than the maximum possible belief µ̄

under n̄ in the decreasing part of the value function such that an agent would
never choose to observe any more actions standing at that belief. The logic is
similar to the one used in the proof of theorem 1. We know an agent would
only observe an extra action if the expected marginal gain is higher. And
also we know a higher n spreads the distribution of beliefs. Given n̄, for all
these λs the µ̄ would remain in the decreasing part and hence the marginal
gain would become negative for a high enough µ ≤ µ̄ due to spreading of the
distribution of belief. Since the cost function is weakly convex this implies the
agents would only learn until the marginal gain is higher than the cost and
that restricts the choice of n. Since a value further sway from µmax in the
decreasing section would more likely generate an even lower value on V (µ)
because of an increased probability the cutoff must remain close enough to
µmax.

For all these λ the nmin would remain closest to µmax because of two rea-
sons. First, the value function is flattest near µmax due to local concavity, and
second, a higher belief in the decreasing section is restricted by a cutoff belief
close to µmax. The first condition implies no belief to the left of µmax and
further away from it would generate the nmin and both first and second part
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combined to make sure that a belief further away in the decreasing section
would not generate nmin due to local concavity of the value function and that
fact that the cutoff would not be further away from µmax which implies the
local concavity argument still holds.

For all the λs such that the µ̄ falls in the final increasing section the agent
would only choose to learn upto a belief higher than λ̄/λ̄+λ only if the marginal
gain is higher. As λ increases the µ̄ is further away from λ̄/λ̄+λ which implies
the marginal gain becomes higher. This implies there exists a minimum value
of λ, say λj

s such that an agent would start to choose to learn upto a belief
that is higher than λ̄/λ̄ + λ, i.e. in the final increasing section.

For all λ < λj
s, the nmin remains the one corresponding to the belief closest

to the µmax but for λ ≥ λj
s that would not be the case. For these sets of

higher λs, the nmin would be in the final increasing part. First of all the
earlier candidate for nmin namely the one closest to µmax would not remain
so because of the following reason: if a belief closer to µmax has a lower n

than that of the one in the final decreasing part, then the marginal gain from
choosing another observation would be lower for the former compared to the
latter since the marginal increase in cost is lower for the former. But we know
for these λs the marginal gain to move into the final increasing section is higher
than the marginal loss and they try to learn as much as possible which implies
for the lowest n if it is near µmax the marginal gain can’t be lower than a
marginal loss as it would imply the agent would never learn up to the final
increasing section. Also for all other beliefs, the marginal gain is higher than
that of the one closest to µmax which increases the incentive to learn, and
hence the nmin would be in the final increasing section.

Step 2: Now that we have the position of nmin for different values of λ, we
can prove the theorem. Let us start with very high values of λ. When λ is very
high and above some threshold λ∗∗, as proved in theorem 1, the social learning
becomes completely uninformative because any agent in period 1 would know
that period 0 agents have not done any private learning and would do no
learning of any kind which would imply no later generation would learn as
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well. This proves the part 4 of the theorem.
Define λ1 as the maximum value of λ such that nmin remains closest to

1/2. Using step 6 of theorem 1 when λ < λ1 and close to 0, as λ increases, the
value function becomes steeper which implies the marginal gain from social
learning at weakly higher for a higher λ near 1/2. This implies there exists a
maximum value of λ say λ∗

s ≤ λ1 where nmin is non-decreasing. This proves
part 1 of the theorem.

For any λ higher than λ1 the nmin is closest to µmax. Let λ2 denote the
maximum value of λ such that µ̄ ≤ µmax. Again using step 6 of the proof
of theorem 1 which shows that for a choice of n that is close enough to µmax

optimally n would be non-increasing in λ. So there exists a minimum value of
λ say λi

s ≥ λ1 such that for all λ ∈
[
λi

s, λ2
]

the nmin would be non-increasing.
For λ ∈

(
λ2, λj

s

)
the nmin still remains the one closest to µmax and for low

enough λ since µ̄ is smaller there exists a maximum value of λ say λd
s such that

the nmin remains to the left of µmax,since the marginal gain from choosing to
go the decreasing section is limited by n̄. Thus for all such λ ≤ λd

s the nmin

would be non-increasing using the step 6 of theorem 1. This completes the
proof of the part 2 of the theorem.

Finally at λj
s the nmin shifts from near µmax to the final increasing section,

which implies nmin makes a upward jump at λj
s as a strictly higher belief

corresponding to nmin can only be obtained by a strictly higher choice of nmin

for sufficiently close λs in the neighborhood of λj
s (remember the derivative of

the value function is continuous in λ). This proves the part 3 of the theorem
and completes the proof of the theorem.
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